
AN INVITATION TO MODULAR FORMS

by

Adrien Sauvaget

Abstract. — In these lecture notes we give a short introduction of the theory of modular forms
for SL(2,Z). We will stick to the geometric point of view (and let arithmetic aspects aside).

The only required background is a general course of complex analysis. In particular we will not
assume the knowledge of Riemann surfaces (nor of manifold actually), but it shall certainly help to
understand the definitions. Besides, we emphasize that some important notions will be developed
in the exercises.

Good references to go further this course are the book of J.P. Serre ([Ser73]), the online course
notes of J.S. Milne ([J.S15]) or the “1-2-3 of Modular forms” by Bruinier, Van der Geer, Harder,
and Zagier ( [BvdGHZ08]).

Contents

1. The Poincaré half-plane and its SL(2,Z) action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Modular forms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3. Moduli space of lattices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4. The ring structure of M∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5. Relation with elliptic curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6. Hecke Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1. The Poincaré half-plane and its SL(2,Z) action

1.1. Action of SL(2,C). — If R = Z,R, or C we denote by SL(2, R) the special linear group
for R {

γ =
(
a b
c d

)
, (a, b, c, d) ∈ R4|det(γ) = ad− bc = 1

}
.

(with the matrix multiplication).

Remark 1.1. — To check that this is a group (for the multiplication), what we use is the
fact that det(γ1 · γ2) = det(γ1)det(γ2) (thus the multiplication is well-defined). Besides, the
inverse of γ is in SL(2, R) as proved in linear algebra courses if R is a field and simply by direct

computation if R = Z, i.e.
(
a b
c d

)−1
=
(
d −b
−c a

)
.
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The group {Id,−Id} is a normal subgroup of SL(2, R). We denote by PSL(2, R) the associated
quotient.

As a large part of the text will be devoted to the study of SL(2,Z), we should recall a
presentation of this group.

Proposition 1.2. — The group SL(2,Z) is generated by the two elements S =
(

0 1
−1 0

)
and T =

(
1 1
0 1

)
. Besides it can be presented as 〈S, T 〉/(S4, (ST )3S−2) and PSL(2,Z) =

〈S, T 〉/(S2, (ST )3).

The proof will be given in Exercise 1.5.

1.2. Automorphism groups of complex domains. — We will consider the set P = Ct∞.
This set has a natural topology that makes it isomorphic to the 2-sphere (think of the infinity as
the north pole and of 0 as the south pole). We say that an endomorphism f of P is holomorphic
if its restriction to C ∩ f−1(C) is an holomorphic function. We denote by Aut(P) the set of
holomorphic automorphisms (we will often simply call them automorphisms).

For any open domain U ⊂ C we denote by Aut(U) the group of holomorphic bijections of U .

Proposition 1.3. — The group Aut(P) is isomorphic to PSL(2,C). The isomorphism is de-

fined by: for all γ =
(
a b
c d

)
∈ SL(2,C), we denote

γ(z) =


az+b
cz+d , if z ∈ C \ {−d/c}
∞, if z = −d/c
a/c, if z =∞.

The group of automorphism of C is the group of affine transformations.

Proof. — The above definition gives an action of SL(2,C) on P that descends to an action of
PSL(2,C) as −Id(z) = z. Besides, it is obvious that γ is holomorphic as defined above. Thus
PSL(2,C) is a subgroup of Aut(P). To check that the converse is also true, we just need to remark
that composing any automorphism f of P with z 7→ 1/(z − f(∞)) we get an automorphism of
C so the statement it falls from the second part of the proposition.

Now let f be an automorphism of C, that we write f(z) =
∑
n≥0 anz

n. Then there are two
possibilities:

– Either a finite number of the an are non zeros. In which case, f is a polynomial (of degree
d) and we know that a generic point of C has d preimages under f , thus d is an affine
transformation (a polynomial of degree 1).

– If an infinite number of an’s are non zero then the function z 7→ f(1/z) has an essential
singularity at 0. By the Casorati-Weirstrass theorem, any neighboorhod of 0 has a dense
preimage in C. This contradicts the injectivity of f .

1.3. Poincaré half-plane. — The Poincaré half-plane H ⊂ C is the set of complex numbers
with strictly positive values. This set is isomorphic to the open disk ∆1 via the map: z 7→ z−i

z+i
(we will denote by ∆r ⊂ C the disk of radius r in C and center 0).
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Figure 1. In grey, the Dirichlet domain

Proposition 1.4. — The automorphism group of H is the group PSL(2,R) (acting by homog-
raphy as in the case of the plane). Equivalently the set of isomorphisms of ∆1 is the set of
functions z 7→ β · z−α1−zα where β and α are complex numbers of norm respectively equal and less
than 1.

Proof. — We can easily check that γ(z) ∈ H for all γ ∈ SL(2,R) and z ∈ H. Now to prove that
the automorphism group PSL(2,R) is the full automorphism group, we shall work with the disk.
Let f be an automorphism of ∆1. We can still assume that we assume that f(0) = 0. Then by
the maximum principle(see Exercise 2.3) we can check that 1 ≤ |f(z)/z| ≤ 1 thus the maximum
principle implies that f(z)/z is a constant (of norm 1).

In the text we will be mainly interested in the action of SL(2,Z) ⊂ SL(2,R) on H. Let us
begin by describing the quotient of this action.

A fundamental domain for the action of SL(2,Z) on H is an open set D ⊂ H such that:
– γ(z) = z implies γ = ±Id for all z ∈ D and γ ∈ SL(2,Z);
– for all z ∈ H, there exists γ ∈ SL(2,Z) and z0 ∈ D such that γz0 = z.
The classical fundamental domain for the action SL(2,Z) on H is the open set (the Dirichlet

domain)
DDir = {z ∈ H

/
|z| > 1, |<(z)| < 1/2}.

See Exercise 1.6 for a proof. To understand what happens on the boundary of this domain, we
just need to see that the element T maps the line <(z) = −1/2 to the line <(z) = −1/2 and
that S fixes the unit circle and acts as an axial symmetry. Thus the quotient H/SL(2,Z) (as a
set) is natural bijection with

DDir \
(
{z
/
|z| = 1,<(z) > 0} ∪ {z

/
<(z) = 1/2}

)
(see figure 1). Besides this quotient has two fixed points under the action of PSL(2,Z) the
complex numbers i (fixed under S) and ρ = exp(2iπ/3) (fixed under ST ).

1.4. Exercises. —

Exercise 1.5. — (1) Using the fact that

S ·
(
a b
c d

)
=
(
−c −d
a b

)
and Tn ·

(
a b
c d

)
=
(
a+ cn b+ nd
c d

)
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show that S and T generates SL(2,Z). (tip: begin by showing that we can get rid of the
coefficient c).

(2) Now consider the group SL(2,Z) and consider the element B = TS. A reduced word on S
and B is a sequence of elements (Ai)1≤i≤n ∈ {S,B,B−1} such that Ai ∈ {B,B−1} ⇔ Ai+1 = S
for all 1 ≤ i < n. Show that A1 . . . An is not the identity (tip: consider P = R+ ∩ (R \ Q) and
N = R− ∩ (R \Q) and use the fact that S(P ) ⊂ N while B(N) and B−1(N) ⊂ (P )).

Exercise 1.6. — (1) Let z in H. Show that there exists a γ =
(
a b
c d

)
∈ SL(2,Z) such that

|cz + d| is minimal. Show that the imaginary part of γ(z) is maximal.
(2) Deduce from this that there exists a γ′ such that γ′ · z ∈ DDir. Conclude that the DDir

is a fundamental domain for the action of SL(2,Z).

2. Modular forms

We give here a first definition of modular forms that unfortunately will not allow to construct
any interesting examples of such objects.

2.1. First definition. — From now on, we generally denote by τ the coordinates of H to
distinguish it from the coordinate z of the plane C.

If f is a function on H and γ ∈ SL(2,R), we define γ[f ] by γ[f ](τ) = f(γ(τ)).

Definition 2.1. — Let k ∈ Z. An holomorphic function f : H → C is weakly modular of

weight k if for all γ =
(
a b
c d

)
∈ SL(2,Z) we have

γ[f ](τ) = f(τ) · (cτ + d)k

for all τ ∈ H.
A function f is a modular form of weight k if it is weakly modular of weight k and for all

x ∈ R, the function f(iy + x) converges to a unique value f(∞) as y →∞ with real values.
In general, a modular form is a linear combination of modular forms of modular forms of given

weights.

For all k ∈ Z, we denote by Mk the space of modular forms of weight k and by M∗ =
⊕
kMk

the space of modular forms.

2.2. Remarks. — Let us give some important remarks:
– Using the action of −Id we can see that (−Id)[f ] = (−1)kf . Thus any modular form of

odd weight is null.
– Following this train of idea we can check that S[f ](i) = ikf(i) and (ST )[f ](ρ) = ρkf(ρ)

for any modular form of weight k. Thus f(i) = 0 if k 6≡ 0[4] and f(ρ) = 0 if k 6≡ 0[3].
– constant functions are quasi-modular of weight 0.
– if f and f ′ are modular of weight k and k′ then ff ′ is modular of weight k + k′.
Besides we can use the maximum principle.

Lemma 2.2. — Let f be a modular form that does not vanish on H or ∞ then f is a constant.

Proof. — See Exercise 2.3
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2.3. The q-expansion. — Let us denote by H>1 = {τ
/
=(τ) > 1}. The following function

will be of great importance:

q : H>1 → ∆exp(−2π)

τ 7→ exp(2iπτ)

Let us remark that q(τ) = q(τ ′) if and only if τ = τ ′ + a with a ∈ Z. In particular if a function
f on H>1 is invariant under T then it defines a function f̃ on ∆∗exp(−2π) = ∆exp(−2π) \ {0}, such
that f = f̃ ◦ q. By abuse of notation we will often denote by f the function f̃ .

Now, remark that imposing that f has a limit when τ goes to infinity, is equivalent to asking
that f extends to an holomorphic function on ∆exp(−2π). In particular if f is modular form we
can write f(q) =

∑
n≥0 anq

n, this is called the q-expansion of f .

2.4. Exercises. —

Exercise 2.3. — We recall that the maximum principle is the following theorem in complex
analysis: Let f be an holomorphic function defined on ∆r and let 0 < r′ < r. If the maximum
(or minimum) of f on ∆r′ is reached at some point of ∆r′ \ ∆r′ then f is constant. Use this
theorem to show that any modular form of weight 0 is a constant.

3. Moduli space of lattices

The purpose of the present section is to construct the first non-trivial modular forms, the
Eisenstein series.

3.1. Lattices. — A lattice Λ of C is a discrete subgroup for the sum (here discrete means that
there exists ε > 0 such that g ∈ Λ ∩∆ε implies g = 0). One can easily check that all lattices of
C can be written as Λ = ω1Z⊕ ω2Z where ω1 and ω2 are R-linearly independent.

We say that two lattices Λ and Λ′ are equivalent if there exists λ ∈ C such that λΛ = Λ′.

Proposition 3.1. — Any lattice is equivalent to a lattice Λ(τ) = Z ⊕ τZ for some τ ∈ H.
Besides, if τ and τ ′ are in H then Λ(τ) is equivalent to Λ(τ ′) if and only if τ = γ(τ ′) for some
γ ∈ SL(2,Z).

Proof. — The lattice ω1Z ⊕ ω2Z is isomorphic to Z ⊕ ω1
ω2
Z and to Z ⊕ ω2

ω1
Z thus any lattice is

isomorphic to a lattice Λ(τ) = Z⊕ τZ for some τ ∈ H.
Now let us fix τ and τ ′ in H such that Λ(τ) is equivalent to Λ(τ ′). Then there exists λ ∈ C,

and coordinates a, b, c, d in Z such that τ = λ(aτ ′ + b) and 1 = λ(cτ ′ + d), thus τ = aτ ′+b
cτ ′+d .

To conclude that ad − bc = 1, it suffices to see that the matrix γ =
(
a b
c d

)
defines a Z-linear

isomorphisms between the lattices Λ(τ ′) and Λ(τ). The general theory of Z-module implies that
this matrix is Z-invertible and thus its determinant is ±1. The determinant is 1 as this linear
isomorphism preserves the orientation of the plane.

In other words the set H/SL(2,Z) is the set of isomorphism classes (or the moduli space of)
lattices of C.
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3.2. Eisenstein series. — In order to define modular forms we will try the naive approach
of cooking functions on the space of lattices. The Eisenstein series of weight k is the function

Gk(Λ) =
∑
ω∈Λ∗

1
ωk
.

If we fix a lattice Λ, we can check that this series is absolutely convergent if k ≥ 3 (in fact if
k ≥ 4 as G3 = 0). Thus if τ ∈ H, we denote

Gk(τ) = Gk(Λ(τ)) =
∑

m,n∈Z2\(0,0)

1
(m+ nτ)k .

Proposition 3.2. — The function Gk is a modular form of weight k for k ≥ 4 and even.
Besides the value Gk(∞) = 2ζ(k) =

∑
m∈Z∗m

−k

Proof. — First let us check that Gk is weakly modular. For this we need to study the transfor-
mation of Gk under the action of T and S.

Gk(τ + 1) =
∑

(m,n)∈Z2\(0,0)

1
(m+ n(τ + 1))k

=
∑
m∈Z∗

1
mk

+
∑
n∈Z∗

∑
m∈Z

1
(m+ n+ nτ)k

=
∑
m∈Z∗

1
mk

+
∑
n∈Z∗

∑
m∈Z

1
(m+ nτ)k = Gk(τ).

The transformation under S is similar

Gk(−1/τ) =
∑

(m,n)∈Z2\(0,0)

1
(m+ n/τ)k

= τkGk(τ).

The convergence of Gk at infinity is proven in Exercise ??. In fact more is true, the series
defining Gk converges uniformly on the disk ∆exp(−2π) thus we can exchange sums and limit and
we can see that as τ goes to infinity the summands tend to 1/mk or 0.

The standard renormalization of these modular forms is Ek = Gk
2ζ(k) (so that the value at

infinity is 1). We will see in the next section that Eisentein series are not only good examples
of modular forms but in some sense the only ones.

3.3. Exercises. —

Exercise 3.3. — Let A,B be positive real numbers, we denote by HA,B the set of complex
numbers such that |z| > A and |<(z)| < B.

(1) Show that there exists C > 0 such that |az+ b| > Cmax(|a|, |b|) for all (a, b) ∈ R2 \ (0, 0).
(2) Deduce that

∑
(n,m)

1
|mτ+n|k < 1

Ck

∑
s≥1

8s
sk . Use this to show that the Eisenstein series

converge normally.

Exercise 3.4. — (1) Show the following equality

πcot(πz) = 1
z

+
∑
n≥1

1
z − n

+ 1
z + n

= πi− 2πi
∑
n≥0

exp(2iπnz).
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(2) Derive this formula to get the equality:∑
n∈Z

1
(z + n)k = (−2iπ)k

(k − 1)!
∑
n≥1

qn.

(3) Deduce from this identity that Gk = 2ζ(k) + 2(2iπ)k

(k−1)!
∑
n≥1 σk−1(n)qn, where σk−1(n) =∑

m|nm
k−1.

4. The ring structure of M∗
The purpose of this section is to compute the dimension of the Mk and describe the structure

of M∗.

4.1. Cuspidal forms. — We denote by ev : Mk → C the evaluation of a modular form at ∞.
This is a linear morphism and we denote by Sk its kernel. The modular forms in Sk are called
cuspidal.

An important example of cuspidal form is the Jacobi function ∆ = 1
1728(E3

4 − E2
6). We will

show further that ∆ is not trivial. Indeed its value at infinity is 0, so we only need to show that
another one is not 0. As E6(i) = 0 we just need to show that E4(i) 6= 0. Assuming this fact, we
will have that Mk ' Sk+12 the isomorphism being given by f 7→ f ×∆. It will be proved in the
next section.

4.2. Counting the zeros of f . — Let f be a modular form of weight k. If τ is a point in
H, we denote by vτ (f) the order of f at τ (the order of the first non-zero coefficient of f if we
develop it as a power series around τ). Remark that the orders of f at τ and γ(τ) are the same.
Besides we denote by v∞(f) the order of the q-expansion of f at 0.

As f is holomorphic on H and at ∞, it has finitely many zeros in DDir. The following lemma
is fundamental.

Lemma 4.1. — We have the following equality

v∞(f) + vi(f)
2 + vρ(f)

3 +
∑
τ

vτ (f) = k/12

where the sum is over the classes of points in DDir \ {i, ρ}

Proof. — To prove this formula one needs to compute the integral of f ′/f along the contour
ABCD of Figure 1 (During the lectures).

Using this Lemma we can compute the dimensions Mk for k ≤ 10.

Lemma 4.2. — If k = 0, 4, 6, 8, 10 then Mk is of dimension 1, for all other k ≤ 10 we have
Mk = {0}.

Proof. — If k ≤ 2, then the sum of the orders of zeros (with weights) if ≤ 1/6. This implies
that f has no zeros. Thus by the maximum principle (see Lemma 2.2), f is a constant.

Now let f be modular form of weight 4, we can see that the sum of orders of zeros of f is 1
3 .

Therefore vρ(f) = 1 and f has no zeros outside. Therefore f − f(∞)E4 is a modular form of
weight 4 with a zero at ∞ and thus is 0. Therefore M4 = C · E4.

Now if f is of weight 6, then f has only one simple zero at i and by the same line of arguments
M6 = C · E6.
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Following the same line of arguments we can check that a form of weight 8 has only one double
zero at ρ and a form of weight 10 has one simple zero at i and one at ρ. Therefore M8 = C ·E2

4
and M10 = C · E4E6.

The second corollary of this fundamental lemma is the structure of the ring of cuspidal modular
forms.

Lemma 4.3. — We have the isomorphism Sk+12 'Mk

Proof. — Indeed as explained in the previous section we just need to show that E4(i) 6= 0 which
is true as E4 has only one zero at ρ.

The conclusion of both lemmas is that the ring of modular form is in fact isomorphic to the
ring C[E4, E6] (see Exercise 4.4).

4.3. Exercises. —

Exercise 4.4. — We have shown above that M∗ is generated by E4 and E6 thus M∗ is iso-
morphic to C[E4, E6]/I where I is an ideal. Show that M∗ is isomorphic to C[E4, E6] (or that
I is trivial, i.e. there is no algebraic relations between E4 and E6). Hint: compute the dimen-
sions of the Mk and show that they agree with the dimensions of the subspaces of C[E4, E6] of
polynomials of fixed degrees (with the degree of Ek being k).

5. Relation with elliptic curves

An elliptic curve is the zero locus in C2 of polynomial equation of degree 3. We will see in
this section that a lattice Λ of C gives a natural elliptic curve isomorphic (as a Riemann surface)
to the quotient C/Λ.

5.1. Periodic functions. — Let us fix a lattice Λ = ω1Z ⊕ ω2Z of C. The problem of this
section is the following: does there exist periodic meromorphic functions defined on C with
periods ω1 and ω2? (i.e. f(z + ω1) = f(z + ω2) = f(z)).

In order to answer this question we follow the most natural approach, i.e. we average some
meromorphic functions with the lattice Λ:

℘(z) = 1
z2 +

∑
ω∈Λ∗

1
(z + ω)2 −

1
ω2

℘̃(z) =
∑
ω∈Λ

1
(z + ω)3

(we could not simply write ℘(z) =
∑
ω∈Λ

1
(z+ω)2 because we wanted to have the normal conver-

gence of the series). The function ℘ is called the Weierstrass function of Λ. We can easily check
that ℘̃ = −2℘′.

Now, we denote byM(Λ) the field of periodic meromorphic functions for the lattice Λ (check
that the products, inverse and sums of periodic meromorphic functions is still periodic). We
will show

Proposition 5.1. — The fieldM(Λ) is isomorphic to

C(℘, ℘′)/(℘′2 − 4℘3 − g2(Λ)℘− g3(Λ)
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where g2 = 60G4 and g3 = 140G6. In particular C/Λ is isomorphic to the (smooth) elliptic
curve defined by the equation Y 2 = 4X3 + g2X + g3

Proof. — Begin by integrating f and f ′/f along the contour of a fundamental domain of the
lattice (during the lectures).

6. Hecke Operators

In this last section, the purpose is to prove an observation made by Ramanujan regarding the
q-expansion of the Jacobi function (see [?]). If we write ∆ =

∑
n≥0 τ(n)qn, then

– τ(mn) = τ(m)τ(n) if m and n are co-prime;
– τ(pr+1) = τ(p)τ(pr+1) + p11τ(pr−1) if p is prime.

6.1. Construction of Hecke operators. — We denote by R =
⊕

Λ C[Λ] the vector space
with basis indexed by lattices of C. For all n ≥ 1, we define the following operators of R:

Tn([Λ]) =
∑

[Λ′:Λ]=n
[Λ′]

Rn([Λ]) = [nΛ]
where the first sum is over sub-lattices of index n. This sum is finite as the group Λ/nλ is
isomorphic to (Z/nZ)2 and finite. These operators have the following properties:

– Rn ◦Rm = Rnm;
– Rn ◦ Tm = Tm ◦Rn;
– Tnm = Tn ◦ Tm if (n,m) = 1;
– Tpr+1 = Tpr ◦ Tp − p ·Rp ◦ Tpr−1 if p is prime.

(see Exercise 6.3). These operators acts on the set of functions on lattices by

(Tn(F ))(Λ) =
∑

[Λ′:Λ]=n
(Tn(F ))(Λ′)

(and the same for Rn). Now, if f is a modular form of weight k, then it defines naturally a
function F on the space of lattices by setting F (ω1Z ⊕ ω2Z) = ω−k2 f

(
ω1
ω2

)
(if we assume that

ω1/ω2 ∈ H). This function F is homogeneous of weight k, i.e. F (λΛ) = λ−kF (Λ). Conversely
an homogeneous functions determines uniquely a modular from. Thus we can define the action
of the Hecke operators on weakly modular functions f weight k by

Tn(f)(τ) = nk−1F (τZ⊕ Z)
(the factor nk−1 is arbitrary but standard in the literature).

6.2. Action of the Hecke operators on the q-expansion. —

Proposition 6.1. — The spaces Mk and Sk are invariant under the action of the operators Tn
and Rn.

Proof. — It is obvious from the definition of Tn and Rn that these operators preserve the
homogeneity of a function defined on lattices, thus it preserves the weakly modular property.

The operator Rn acts by multiplication of modular form of weight k by n−2k. To show that
the analicity of a function at ∞ is preserved, we will describe more precisely the action of Tn on
modular forms. For this we will use the following lemma.
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Lemma 6.2. — Any lattice of index n in Λ(τ) is of the form (aτ + b)Z ⊕ dZ where ad = n,
a > 0, and 0 ≤ b < d.

Proof. — It is obvious that all (aτ+b)Z⊕dZ where ad = n, a > 0, and 0 ≤ b < d are sublattices
of index n. Besides we can obviously check that two such lattices are distinct. To show that any
sub-lattice is of this form, let Λ′ be a sub-lattice of Λ of index n, we define d to be the minimal
integer such that d ∈ Λ′. Then Λ′ = ωZ⊕ dZ with ω = az + b. We can check that ad = n and
that b can be chosen in [[0, d− 1]].

In particular, we can rewrite

Tn(f)(τ) = nk−1∑
d|n

∑
0≤b<d

d−kf(τ + b

d
)

In particular, if f is a modular expansion, then Tn(f) is analytic (thus a quasi-modular form)
and its q-expansion is given by

Tn(f)(τ) =
∑
m≥0

 ∑
d|(m,n)

dk−1amn/d2

 qm.
Thus Tn(f) ∈ Sk iff f ∈ Sk.

We obtain the identity for the tau-function by remarking that S12 is 1-dimensional, thus ∆
is an eigenvector of all operators Tn. Besides the explicit expression of Tn(∆) shows that the
coefficient in front of q is equal to τn thus the eigenvalue of ∆ for Tn is τn. The identities for
the tau function then follow from the identities for the operators Tn and Rn.

6.3. Exercises. —

Exercise 6.3. — Let Γ be a lattice and let Γ′ be a sub-lattice of index pn+1. We denote by a
the coefficient of Γ′ in Tpn ◦ Tp(Γ) and by c the coefficient of Γ′ in Tpn−1 ◦Rp(Γ).

(1) If Γ′ is not included in pΓ then show that a = 1 and c = 0.
(2) If Γ′ is included in pΓ, show that a = p + 1 and c = 1. Conclude that the identity

Tpr+1 = Tpr ◦ Tp − p ·Rp ◦ Tpr−1 holds for all primes p.
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