
Université Pierre et Marie Curie

École doctorale de sciences mathématiques de Paris centre

THÈSE DE DOCTORAT
Discipline : Mathématiques

présentée par

Adrien SAUVAGET

Théorie de l’intersection sur les espaces de
différentielles holomorphes et méromorphes

dirigée par Alessandro CHIODO et Dimitri ZVONKINE

Soutenue le 30 novembre 2017 devant le jury composé de :

M. Alessandro CHIODO Institut de mathématiques de Jussieu directeur
M. Gavril FARKAS Humboldt-Universität zu Berlin examinateur
M. Erwan LANNEAU Institut Fourier - Université de Grenoble I examinateur
Mme. Ariane MÉZARD Institut de mathématiques de Jussieu examinatrice
M. Alxander POLISHCHUK University of Oregon rapporteur
M. Dimitri ZVONKINE Institut de mathématiques de Jussieu directeur

Au vu des rapports de :

M. Rahul PANDHARIPANDE ETH Zürich
M. Alxander POLISHCHUK University of Oregon



2

Institut de mathématiques de
Jussieu-Paris Rive gauche. UMR
7586.
Boîte courrier 247
4 place Jussieu
75 252 Paris Cedex 05

Université Pierre et Marie Curie.
École doctorale de sciences
mathématiques de Paris centre.
Boîte courrier 290
4 place Jussieu
75 252 Paris Cedex 05



3

C’est notre attention qui place les objets dans une chambre et l’habitude qui les
en retire pour nous y faire de la place.

Marcel Proust, A l’ombre des jeunes filles en fleurs.



4

Remerciements

Tout d’abord je tiens à remercier Dimtri Zvonkine pour m’avoir proposé la
problématique de départ de cette thèse. Il a consacré un temps considérable à
m’écouter, à m’indiquer des pistes de recherche et à mettre à l’épreuve mes travaux
afin d’en tirer le meilleur. Je remercie Alessandro Chiodo pour avoir accepté de co-
encadré cette thèse et pour les conseils et discussions que nous eues.

Rahul Pandharipande et Anton Zorich ont été deux des premières personnes à
suivre avec attention la progression de mes recherches. Cela a joué un rôle impor-
tant pour le développement de cette thèse et a très certainement aiguisé mon appétit
pour la recherche.

Par ailleurs je tiens à remercier Rahul Pandharipande et Alexander Polishchuk
pour leur travail de rapporteur du manuscrit ainisi que Gavril Farkas, Erwan Lan-
neau et Ariane Mézard pour avoir accpeté de faire partie du jury.

Plusieurs personnes ont été des interlocuteurs précieux et disponibles pour
comprendre, approfondir ou découvrir de nouveaux aspects de la géométrie des
espaces des modules. Quelques noms me viennent à l’esprit dans le désordre mais
j’ai bien peur d’en oublier : Felix Janda, Dawei Chen, Martin Moëller, Samuel
Grushevsky, Peter Zograf, Dmitri Korotkin, Hsueh-Yung Lin, Etienne Mann, Paolo
Rossi, Jérémy Guéré, Qile Chen, Yongbin Ruan, Pierrick Bousseau, Omid Amini,
Charles Fougeron, Pascal Hubert.

J’aimerais remercier les doctorants de Jussieu (et de la région parisienne) que
j’ai eu la chance de côtoyer au quotidien durant ces années de thèse et qui ont créé
un environnement convivial et agréable. Plus généralement, l’IMJ (ou plutôt les
personnes qui le constituent) a été un cadre idéal pour le développement de mes
recherches.

Enfin merci à mes proches pour avoir été des soutiens inébranlables. Et surtout,
merci à Virginie pour avoir été à mes côtés depuis le début.



Contents

Chapter 1. Introduction 7
1.1. Les surfaces de translation 7
1.2. Espaces des modules de courbes 8
1.3. Anneaux tautologiques 11
1.4. Stratification des espaces des modules de courbes stables 13
1.5. Stratification des espaces de différentielles 15
1.6. Différentielles d’ordres supérieurs et classes de Prym-Tyurin 18
1.7. Nombres d’Hurwitz 19
1.8. Cycles de double ramification 21

Chapter 2. Cohomology classes of strata of differentials 23
2.1. Different formulations of the problem 23
2.2. Stable differentials 29
2.3. The induction formula 54
2.4. Examples of computation 74
2.5. Relations in the Picard group of the strata 75

Chapter 3. Prym-Tyurin classes and loci of degenerate differentials 83
3.1. Prym-Tyurin classes 83
3.2. Space of admissible n-differentials 89
3.3. Bergman tau function and Hodge class on PM

(n)
g 94

3.4. An alternative computation of δdeg 101
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CHAPTER 1

Introduction

1.1. Les surfaces de translation

Avant de formuler nos problématiques dans un langage plus algébrique, nous
commençons par donner une première approche “visuelle” des strates de différen-
tielles holomorphes. Ce point de vue des surfaces de translation est notamment
celui qui permet de munir chaque strate de différentielles d’une structure de sys-
tème dynamique (voir [83] pour une introduction plus ample aux surfaces de trans-
lations).

Definition 1.1.1. Une surface de translation est la donnée d’un polygone P du
plan euclidien satisfaisant les propriétés suivantes:

• P a un nombre pair d’arêtes;
• les arêtes de P sont regroupées par paires;
• les deux arêtes d’une paire représentent le même vecteur de R2.

V1

V2

V3

V4

V1V2

V3

V4

FIGURE 1. Surface de translation de type (2).

On note C la surface obtenue en identifiant les arrêtes de P par paires. C’est
une surface compacte et orientée sans bord. On note g son genre (son nombre de
“trous”) et {x1,x2, . . . ,xn} ⊂C l’ensemble des images de sommets. Pour chaque xi

on définit l’angle de xi comme la somme des angles des sommets de P envoyés sur
xi. Cet angle est un réel de la forme 2(ki + 1)π avec ki ∈ N. On appellera la liste
µ = (k1, . . . ,kn) le type de la surface de translation.

La surface C\{x1,x2, . . . ,xn} possède une structure de surface de Riemann na-
turelle. Celle-ci est obtenue en identifiant le plan euclidien à C, cela permet de
déduire simplement la structure complexe en dehors des arêtes. La structure com-
plexe au voisinage des arêtes est obtenue en identifiant un voisinage d’un point
d’une arête avec le voisinage de son translaté sur l’arête jumelle. La surface C pos-
sède également une forme différentielle holomorphe naturelle α définie en dehors
des xi: si on note z la coordonnée du plan complexe, celle-ci est donnée par α = dz.

7



8 1. INTRODUCTION

La structure de surface de Riemann et la forme différentielle s’étendent de
manière unique à toute la surface C. Pour tout 1≤ i≤ n, la forme α ainsi construite
a un zéro d’ordre ki en xi. La formule de Gauss-Bonnet (ou de Riemann-Roch)
implique donc que 2g − 2 =

∑n
i=1 ki.

On peut vérifier cette égalité sur l’exemple de la figure 2 obtenue par recolle-
ment du polygone de la figure 1: 2g − 2 = 2×2 − 2 = 2.

V1
V2

V3

V4

FIGURE 2. Surface obtenue par recollement du polygone de la figure 1.

A partir de la donnée d’une surface de translation P on a construit une surface
de Riemann avec une forme différentielle holomorphe. Réciproquement, soit C
une surface de Riemann munie d’une différentielle holomorphe α avec des zéros
{x1, . . . ,xn}. Si on se donne des cycles formant une base de l’homologie relative
H1(C,{x1, . . . ,xn},Z) on peut reconstituer le polygone par intégration de la forme
différentielle α.

Surfaces de translation équivalentes. On dira que deux surfaces de transla-
tion P et P′ sont isomorphes si les couples (C,α) et (C,α′) sont isomorphes (voir
Section 1.5). Une interprétation graphique de cette équivalence est la suivante.

FIGURE 3. Deux surfaces de translation équivalentes.

Sur la figure 3 on a représenté deux surfaces équivalentes: on passe d’un poly-
gone à l’autre en découpant un sous-polygone et en recollant les deux morceaux le
long d’une paire d’arêtes jumelles. Deux surfaces de translation sont isomorphes
s’il existe une série de découpages et recollements permettant de passer de l’une à
l’autre.

1.2. Espaces des modules de courbes

1.2.1. Qu’est-ce qu’un espace des modules? Un espace des modules est un
espace dont les points représentent les classes d’isomorphisme d’objets géométriques
d’un type fixé (les connexions d’un fibré vectoriel, les structures presque com-
plexes d’une variété différentielle, les hypersurfaces d’un espace projectif d’un
degré fixé,...). L’espace des modules est en général lui-même muni d’une structure
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géométrique (variété analytique réelle ou complexe, schéma,...) déterminée par la
théorie des déformations des objets paramétrés.

Exemple 1.2.1. Un des premiers exemples d’espace des modules est l’espace
projectif de dimension n > 0. En tant qu’ensemble, l’espace projectif est défini
comme le quotient CPn = (Cn+1 \ {0})

/
C∗, où l’action de C∗ est donnée par la

multiplication des vecteurs de Cn+1 par un scalaire. Les points de CPn sont en
bijection avec les droites de Cn+1 passant par l’origine. L’espace projectif possède
une structure naturelle de variété analytique complexe ou de variété algébrique
complexe.

Exemple 1.2.2. Une généralisation de l’exemple précédent est donnée par les
grassmanniennes. Fixons un espace vectoriel complexe de dimension finie V et
un entier positif r. La grassmannienne Gr(V,r) est l’espace paramétrant les sous-
espaces vectorielles de V de dimension r.

Exemple 1.2.3. Fixons une variété complexe (algébrique ou analytique) X . Le
groupe de Picard de X est défini comme l’ensemble des classes d’équivalence de
fibré en droites holomorphe sur X . Comme son nom l’indique il s’agit également
d’un groupe que l’on note Pic(X).

1.2.2. Espace des modules de courbes. Les espaces des modules de courbes
complexes seront le dénominateur commun des objets introduits dans cette thèse.
Nous avons choisi de donner ici une approche “intuitive” des espaces des modules.
Nous renvoyons le lecteur à l’Appendice A pour une introduction aux champs de
Deligne-Mumford et à la définition des espaces des modules des courbes dans ce
formalisme.

Considérons des surfaces compactes orientées et sans bord. Il est connu depuis
le XIXème siècle que deux telles surfaces Σ et Σ′ sont isomorphes si et seulement
si elles ont la même caractéristique d’Euler ou le même genre (nombre de trous).

Maintenant considérons deux surfaces de Riemann C and C′ d’un genre fixé.
Ces deux surfaces sont isomorphes en tant que variétés différentielles mais elles ne
sont pas nécessairement isomorphes en tant que surfaces de Riemann. En d’autres
termes, un isomorphisme réel ne respecte pas la structure complexe en général.
Cela nous conduit à définir Mg comme l’ensemble des surfaces de Riemann de
genre g à biholomorphisme près.

En général, fixons g et n deux entiers positifs. Une surface de Riemann mar-
quée est la donnée de (C,x1, . . . ,xn) où C est une surface de Riemann et les xi sont
des points deux à deux de C. Deux surfaces marquées (C,x1, . . . ,xn) et (C′,x′1, . . . ,x

′
n)

sont isomorphes si il existe un biholomorphisme φ : C→C′ tel que φ(xi) = x′i pour
tout 1≤ i≤ n. On définit Mg,n comme l’ensemble des sufaces de Riemann de genre
g à n points marqués à isomorphismes près.

L’ensemble Mg,n peut être équipé d’une structure de variété algébrique com-
plexe singulière mais pour des raisons techniques ce n’est pas la plus naturelle.
Nous avons le résultat important suivant.

Proposition 1.2.4. Supposons que g et n vérifient la condition 2g − 2 + n> 0 (con-
dition de stabilité). Alors, il existe un champ algébrique lisse de Deligne-Mumford
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Mg,n dont les points géométriques sont les classes d’équivalence de surfaces de
Riemann de genre g à n points marqués.

Les champs algébriques de Deligne-Mumford sont une généralisation de la
notion de schémas qui permet de prendre en compte les automorphismes des objets
classifiés. C’est ce champ que nous appellerons l’espace des modules de surfaces
de Riemann de genre g à n points marqués.

Remarque 1.2.5. La condition de stabilité n’exclut que quatre cas: (g,n) = (0,0),
(0,1), (0,2) et (1,0).

Remarque 1.2.6. Toute surface de Riemann compacte peut être réalisée comme
une courbe algébrique projective lisse. C’est pourquoi nous parlerons dans cette
thèse plutôt d’espaces des modules de courbes complexes lisses (ou courbes lisses
marquées) plutôt que de surfaces de Riemann.

Mentionnons tout de suite quelques propriétés des espaces des modules de
courbes lisses.

Proposition 1.2.7. L’espace Mg,n est lisse, irréductible et de dimension (com-
plexe) 3g − 3 + n.

Une autre propriété importante est l’existence de courbes universelles (voir
figure 8).

Proposition 1.2.8. Soit g,n tels que 2g − 2 + n > 0. Il existe un champ algébrique
de Deligne-Mumford Cg,n lisse et de dimension 3g − 2 + n tel que:

• il existe un morphisme plat π : Cg,n→Mg,n;
• la fibre de π au-dessus d’un point géométrique est une courbe dans la

classe d’isomorphisme représentée par ce point.

Exemple 1.2.9 (M0,3 et M0,4). Le théorème d’uniformisation de Riemann im-
plique toute surface de Riemann compacte de genre 0 est isomorphe à CP1. De plus
un automorphisme de CP1 est complètement déterminé par l’image de 3 points.
Nous en déduisons que M0,3 est un point : toute surface de genre 0 à 3 points
marqués est isomorphe à (CP1,0,1,∞).

Maintenant tout point deM0,4 sera donné par (CP1,0,1,∞, t) où t est un point
de CP1 différent de 0,1 et∞. On conclut donc queM0,4 ' CP1 \{0,1,∞}.

Exemple 1.2.10 (M1,1). On va noter H le demi-plan supérieur de C. Une courbe
pointée de genre 1 est toujours isomorphe au quotient Tτ = C

/
(Z⊕ τZ) pour un

certain τ dans H. De plus deux tores Tτ et Tτ ′ sont isomorphes si et seulement
si τ ′ = γ · τ pour une certaine matrice γ dans PSL(2,Z) (voir figure 1, (a)). Donc
l’espace des modulesM1,1 est isomorphe au quotient H/PSL(2,Z) (voir figure 1,
(b)).

1.2.3. Compactification de l’espace des modules de courbes. L’espaceMg,n

n’est en général pas compact. D’une part, deux points marqués ne peuvent pas se
rencontrer par définition deMg,n. D’autre part, un cycle d’une surface de Riemann
peut être rendu aussi court que l’on veut mais on ne peut pas le contracter (voir fig-
ure 1). La non-compacité est un problème si l’on veut utiliser des outils de théorie
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(a) (b)

FIGURE 4. (a) Les tores Tτ et Tτ ′ sont isomorphes. (b) Domaine
fundamental du quotient H/PSL(2,Z)'M1,1.

de l’intersection ou la dualité de Poincaré. Ce problème est résolu en autorisant
une classe de courbes légèrement plus large.

Une courbe complexe nodale est une courbe singulière dont les singularités
sont localement données par l’équation {(x,y) ∈ C2/xy = 0}. Une courbe nodale
de genre g à n points marqués est une courbe nodale avec n points 2 à 2 distincts
dans le lieu lisse. Une courbe nodale marquée sera dite stable si elle possède un
nombre fini d’automorphismes. On peut remarquer que cette définition de stabilité
est équivalente à celle de la section précédente pour les courbes lisses. On notera
Mg,n l’espace des modules de courbes stables de genre g à n points marqués.

Proposition 1.2.11. L’espaceMg,n est un champ de Deligne-Mumford lisse, pro-
pre et irréductible de dimension 3g-3+n. De plusMg,n est un sous-champ ouvert
et dense deMg,n.

Par ailleurs, il existe une courbe universelle π : Cg,n →Mg,n vérifiant les
mêmes propriétés que Cg,n.

FIGURE 5. Exemple de dégénérescence: si l’on contracte un 1-
cycle d’une surface de genre 3 on obtient une courbe nodale de
même genre arithmétique.

1.3. Anneaux tautologiques

L’homologie et la cohomologie (singulière ou par résolution des faisceaux lo-
calement triviaux) des champs de DM peut être définie pour n’importe quel anneau
de coefficients, mais cette définition est relativement technique. Nous n’utiliserons
dans cette thèse que des groupes de cohomologie et de Chow à coefficients dans Q
(voir [78] pour la définition des anneaux de Chow des champs algébriques). Dans
ce cas l’anneau de cohomologie du champ est l’anneau de cohomologie de l’espace
topologique sous-jacent. De plus on dispose dans ce cas de la dualité de Poincaré
pour les champs de DM lisses.
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Exemple 1.3.1. La cohomologie du champ {pt}/(Z/2Z) est la cohomologie
de l’espace classifiant de Z/2Z, i.e. l’espace projectif réel infini. On a alors
H2i({pt}/(Z/2Z),Z)' Z/2Z 6= H2i({pt},Z) pour i> 0.

Mumford a introduit l’idée de ne considérer qu’un partie des anneaux de co-
homologie (ou de Chow) des espaces des modules que l’on appellera anneaux tau-
tologiques (voir [62]).

Définition 1.3.2. Il existe 3 types d’applications naturelles entre espaces des mod-
ules de courbes:

• L’application d’oubli, π :Mg,n+1 →Mg,n envoie une courbe à (n + 1)
points marqués sur la stabilisation de la courbe sans le n + 1-ème point.
Cette application est équivalente à la courbe universelle.
• Le morphisme de recollement de type arbre, jtree :Mg1,n1+1×Mg2,n2+1→
Mg,n est le morphisme qui “attache” 2 courbes par leur dernier point
marqué formant ainsi un nœud.
• Le morphisme de recollement de type boucle, jloop :Mg−1,n+2 →Mg,n

est le morphisme qui attache deux points d’une courbe formant une auto-
intersection nodale (voir la figure 7).

FIGURE 6. Un exemple pour l’application d’oubli. On oublie le
point x2 et on contracte la composante rationnelle qui ne vérifie
plus la condition de stabilité.

FIGURE 7. Un exemple pour le morphisme de recollement de
type boucle. Ici on représente l’application jloop :M3,3→M4,1.
Les points 2 et 3 sont identifiés pour créer un noeud.

Définition 1.3.3. La famille minimale de sous-anneaux RH∗(Mg,n)⊂H∗(Mg,n,Q)
contenant 1 et stable par les poussés-en-avant des applications d’oubli et de recolle-
ment est appelée famillle des anneaux tautologiques des espaces des modules de
courbes stables. De la même manière on définit les anneaux de Chow tautologiques
R∗(Mg,n)⊂ A∗(Mg,n,Q).

Il y a deux familles importantes de classes tautologiques: les classes ψ et les
classes κ.
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Définition 1.3.4. Soient g,n tels que 2g − 2 + n > 0 et soit i ∈ [[1,n]]. Le fibré en
droite Li→Mg,n est défini comme le fibré cotangent relatif au i-ème point marqué
(voir figure 8). La classe ψi ∈ H2(Mg,n,Q) est la classe de Chern de Li.

La classe κm ∈ H2m(Mg,n,Q) est définie comme π∗(ψm+1
n+1 ) où π :Mg,n+1 →

Mg,n est l’application d’oubli du (n + 1)-ème point marqué.

FIGURE 8. Le fibré L∨1 →M2,1. Sa fibre au point (C,x1) est
l’espace tangent à de C au point x1.

Remarque 1.3.5. Les anneaux tautologiques sont en général strictement plus pe-
tits que les anneaux de cohomologie complets. Cependant c’est un problème diffi-
cile d’exhiber des classes non-tautologiques (voir [35] ou [65] par exemple). Les
anneaux tautologiques ont été largement étudiés pour plusieurs raisons:

• On a plusieurs résultats caractérisant la structure de ces anneaux. Les
deux plus importants étant d’une part le théorème de Witten-Kontsevich
permettant de calculer les nombres d’intersections de classes tautologiques
(voir [79] et [54]) et d’autre part les relations de Pixton-Faber-Zagier
décrivant partiellement la structure des anneaux tautologiques en tout de-
gré (voir [64]).
• Les anneaux tautologiques recèlent une combinatoire et une algèbre riche.

Celle-ci est généralement étudiée grâce au formalisme de Givental des
variétés de Frobénius, des théories cohomologiques des champs et des
opérades (voir [32], [33], ou [60]). L’un des résultats important étant le
théorème de reconstruction de Teleman pour les théorie cohomologiques
des champs semi-simples (voir [75]).
• Enfin, et c’est ce qui va nous intéresser dans cette thèse, “beaucoup” de

sous-lieux deMg,n définissables géométriquement ont une classe de co-
homologie Poincaré-duale dans RH∗(Mg,n,Q).

1.4. Stratification des espaces des modules de courbes stables

1.4.1. Stratification. Soit X un champ de DM. Une stratification de X est une
famille (Yi)i∈I de sous-espaces lisses telle que

• X est l’union disjointe des Yi;
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• la clôture de chaque Yi dans X est une union disjointe de (Yj) j∈J avec
J ⊂ I.

Si Yj est dans la clôture Yi, on dit que Yj est une strate de bord de Yi.

Remarque 1.4.1. Si X est irréductible alors l’un des Yi vérifiera X = Ȳi.

Example 1.4.2. Voici une stratification de la sphère. Les flèches représent la
relation “être dans le bord de”.

Co-dimension 0 Y0

Co-dimension 1 Y1,1

OO

Y1,2

bb

Co-dimension 2 Y2,1

<<

Y2,2

OO <<

Y2,3

bb OO

Y2,4

gg

FIGURE 9. Exemple de stratification.

1.4.2. Graphes stables. Les espaces des modules de courbes stables admet-
tent une stratification naturelle.

Définition 1.4.3. Un graphe stable est la donnée de

Γ = (V,H,g : V → N,a : H→V, i : H→ H,E,L)

satisfaisant les propriétés suivantes

• V est un ensemble de sommets muni d’une fonction de genre g;
• H est un ensemble de demi-arêtes muni d’une fonction d’attribution de

sommet a et d’une involution i;
• E, l’ensemble des arêtes est défini comme l’ensemble des orbites de

longueur 2 de i dans H;
• (V,E) définit un graphe connexe;
• L est l’ensemble des points fixes par i en bijection avec {1, . . . ,n} appelés

des pattes;
• pour chaque sommet v, la condition de stabilité suivante 2g(v)−2+n(v)>

0 est satisfaite, où n(v) est la valence de Γ en v.

Notation 1.4.4. Le genre de Γ est défini par g(Γ) =
∑

v∈V g(v) + #(E) − #(V ) + 1.
Notons v(Γ), e(Γ), et n(Γ) les cardinaux de V,E, et L, respectivement. On note Gg,n

l’ensemble des graphes stables de genre g à n pattes.

Soit Γ un graphe stable. On définit l’espace des modules

MΓ =
∏
v∈V

Mg(v),n(v),

et ζΓ :MΓ→Mg,n le morphisme naturel défini par une succession de morphismes
de recollement. L’image deMΓ est un sous-champ deMg,n qui est isomorphe à
MΓ/Aut(Γ). Si une courbe est dans l’image deMΓ on dit que Γ est son graphe
dual. La famille des sous-champs (MΓ/Aut(Γ))Γ∈Gg,n fournit une stratification de
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Mg,n indexée par les graphes stables. Les strates sont irréductibles. La codimen-
sion d’une strate est donnée par #(E).

1.4.3. Algèbre des strates. La stratification de l’espaces des modules de courbes
stables permet de décrire une famille génératrice des anneaux tautologiques.

Définition 1.4.5. Un graphe stable décoré est la donnée d’un graphe stable Γ et de
classes Pv ∈ A∗(Mg(v),n(v)) pour chaque sommet v de Γ telles que Pv est un produit
en classes κ et ψ.

Un graphe décoré détermine une classe

ζΓ∗

(∏
v∈V

Pv

)
∈ R∗(Mg,n).

Notation 1.4.6. On note Sg,n le Q-espace vectoriel engendré par les classes des
graphes décorés. On a une application linéaire naturelle: Sg,n → R∗(Mg,n). On
appelle l’espace Sg,n l’algèbre des strates (cf Remarque 1.4.8).

Proposition 1.4.7. L’anneau tautologique R∗(Mg,n) est linéairement engendré
par les classes des graphes décorés, i.e. Im(Sg,n) = R∗(Mg,n).

Remarque 1.4.8. On se réfère à [35] pour une preuve de la Proposition 1.4.7. La
famille des espaces vectoriels Sg,n est clairement stable pour les poussés-en-avant
des applications d’oubli de points marqués et les morphismes de recollements.
Pour montrer la Proposition 1.4.7, il suffit de montrer que cet espace vectoriel est
une algèbre. Cela revient à exprimer le produit d’intersection de graphes décorés
en fonctions de graphes décorés.

1.5. Stratification des espaces de différentielles

Ici nous introduison les espaces de différentielles ainsi que leur stratification.
Notre résultat principal est l’expression des classes Poincaré-duales des strates de
différentielles en termes de classes tautologiques.

1.5.1. Définition algébrique. Soient g,n tels que 2g − 2 + n > 0. Le fibré de
Hodge p :Hg,n→Mg,n est le fibré vectoriel dont la fibre au dessus de (C,x1, . . . ,xn)
est donnée par H0(C,ωC) où ωC est le fibré cotangent à C. Par la formule de
Riemann-Roch, il s’agit d’un fibré vectoriel de rang g.

Definition 1.5.1. Soit Z = (k1, . . . ,kn) une liste d’entiers positifs. La strate des
différentielles de types Z est le lieu Ag,Z ⊂ Hg des éléments (C,α,x1, . . . ,xn) tels
que xi soit un zéro d’ordre ki de α pour tout 1≤ i≤ n.

Le lieu Ag,Z est bien un sous-champ de DM deHg,n. En effet on verra plus loin
qu’il peut être défini comme le lieu d’annulation d’une section d’un fibré vectoriel.

Remarque 1.5.2. On ne suppose pas dans la Définition 1.5.1 ci-dessus que la
somme des ki soit 2g − 2.

Le lieu Ag,Z est invariant sous l’action de C∗. On notera PAg,Z ⊂ PHg,n sa
projectivisation. Par ailleurs, le fibré de Hodge possède une extension naturelle
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à l’espace des courbes stables. Cette extension Hg,n →Mg,n est définie en rem-
plaçant la notion de différentielle holomorphe par celle de différentielle abélienne
(voir chapitre 2 pour un description des différentielles abéliennes sur les courbes
nodales). L’espace total du projectivisé PHg,n est donc compact. On va noter Ag,Z

et PAg,Z les clôtures de Ag,Z et PAg,Z dansHg,n et PHg,n.

1.5.2. Retour sur les surfaces de translation. Supposons que Z est une par-
tition de 2g − 2. La correspondance exposée dans la section 1.1 entre surfaces de
translation et surfaces de Riemann munies d’une différentielle holomorphe nous
permet de définir Ag,Z comme l’espace des modules de surface translations avec
singularités marquées. En utilisant ce point de vue on déduit deux propriété impor-
tantes des surfaces de translation:

• Une paramétrisation locale de Ag,Z est donnée par H1(C,{x1, . . . ,xn},C)∨.
Graphiquement, on se donne simplement un nombre complexe par paire
d’arêtes correspondant au choix d’un vecteur. On obtient alors que Ag,Z

est lisse et de dimension 2g−1+n (sur l’exemple 1 on a bien 2×2−1+1 =
4 dimensions).
• Le groupe PSL(2,R) agit sur les vecteurs de R2 et donc sur les surfaces

de translation en agissant sur les polygones. On obtient ainsi une action
du groupe PSL(2,R) sur l’espace Ag,Z . Cette action induit une structure
de sytème dynamique en restreignant l’action au groupe diagonal{(

et 0
0 e−t

)
, t ∈ R

}
⊂ PSL(2,R).

Mentionons deux problèmes importants qui ont motivé (et continuent de mo-
tiver) les géomètres et dynamiciens qui étudient les surfaces de translation.

• Le premier problème important est de classifier les sous-variétés analy-
tiques fermées sous l’action de PSL(2,R). Un des résultats les plus im-
portants affirme que toutes ces sous-variétés sont algébriques et définiss-
ables sur Q (voir [24] et [30]).
• Le second problème consiste à déterminer les invariants dynamiques de

l’action du groupe diagonal (exposants de Lyapounov). Ces invariants
sont reliés à des calculs de nombres d’intersection algébriques (voir [53])
ou à des asymptotiques de nombres de revêtements ramifiés du tore stan-
dard (voir [25], [12] ou [11]). Des inégalités sur les exposants de Lya-
pounov ou leur somme ont été prouvées récemment par des considéra-
tions sur les fibrés stables et en exhibant des suites de Harder-Narasimhan
du fibré de Hodge au dessus de courbes de Teichmüller (voir [81] ou [22]).

Au travers de ces deux problématiques on voit se tisser des liens forts et encore
peu compris entre les propriétés dynamiques et algébriques des strates de différen-
tielles.

1.5.3. Classes des strates. Nous pouvons maintenant énoncer notre problème
principal.

Problème 1.5.3. Comment exprimer les classes de cohomologie Poincaré-duales
des strates PAg,Z dans H∗(PHg,n,Q)?
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Soit L le dual du fibré tautologiqueO(1)→ PHg,n. Soit ξ la première classe de
Chern de L. L’un des théorèmes principaux de cette thèse est le suivant.

Théorème 1.5.4. Soit RH∗(Hg,n,Q) le sous-anneau de H∗(Hg,n,Q) engendré par
les tirés-en-arrière de classes tautologiques deMg,n et la classe ξ. Pour tout Z, la
classe de cohomologie Poincaré-duale de PAg,Z appartient à RH∗(Hg,n,Q) et est
explicitement calculable.

La preuve de ce théorème est un algorithme. On décrit un ensemble de tech-
niques permettant de calculer les classes des PAg,Z et nous prouvons qu’à chaque
étape les classes que nous obtenons sont des combinaisons de classes tautologiques
et de puissances de ξ (voir chapitre 2).

1.5.4. Variations autour du théorème 1.5.4. Il existe plusieurs questions
analogues au Problème 1.5.3.

1.5.4.1. Strates non marquées. Soit µ une partition de 2g − 2. On définit par
Hg,µ ⊂Hg le lieux des différentielles avec un ensemble d’ordres de zéros donnée
par µ. Dans ces strates de différentielles les zéros sont donc non-marqués. Pour
calculer les classes de cohomologie des strates de différentielles non marquées, on
calcule l’expression des strates pour les différentielles avec singularités marquées
et on utilise l’application d’oubli des points marqués. En utilisant la formule de
projection et le fait que le fibré Hg,n →Mg,n est le tiré-en-arrière de Hg →Mg

par l’application d’oubli des points marqués on déduira le théorème suivant.

Théorème 1.5.5. Soit RH∗(Hg,Q) le sous-anneau de H∗(Hg,Q) engendré par
les tirés-en-arrière des classes tautologiques de Mg et la classe ξ. Pour toute
partition µ de 2g−2, la classe de cohomologie Poincaré-duale de PHg,µ appartient
à RH∗(Hg,Q) et est explicitement calculable.

1.5.4.2. Différentielles méromorphes. Nous allons introduire l’espace de dif-
férentielles stables (voir Définition 2.1.3). Cet espace paramètre les différentielles
méromorphes avec des pôles d’ordres fixés. De même que le fibré du Hodge, les
espaces de différentielles stables sont stratifiés en fonction des ordres des zéros de
la différentielle. On va prouver au chapitre 2 que la conclusion des théorèmes 1.5.4
ou 1.5.5 est également valide pour les espaces de différentielles stables.

Remarque 1.5.6. Dans le chapitre 2 nous travaillons simultanément avec des dif-
férentielles méromorphes et holomorphes. De fait notre démonstration par récur-
rence nous y oblige, car même si l’on commence par une strate holomorphe la
récurrence peut faire appel à une strate méromorphe.

1.5.4.3. Différentielles d’ordres supérieurs. Soit k > 1. On considère le fibré
vectoriel

Ω(k)
g,n→Mg,n = π∗ω⊗k

Cg,n/Mg,n
.

Les points de Ω(k)
g,n sont des courbes stables munies d’une différentielle abélienne

d’ordre k. Ce fibré est stratifié de la même manière que le fibré de Hodge en
fonction des zéros de la k-différentielle. Peut-on généraliser les théorèmes 1.5.4
et 1.5.5 aux différentielles d’ordre k ? Pour l’instant la réponse est inconnue. La
difficulté provient du fait que les strates de différentielles d’ordre supérieur ne sont
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pas de dimension pure: en effet, les k-différentielles qui sont des puissances k-
ièmes de différentielles abéliennes forment un lieu de dimension plus grande que
les autres. Ceci empêche d’appliquer directement les techniques du chapitre 2.

1.5.4.4. Expression des classes dans H∗(Mg,n,Q). On considère le morphisme
d’oubli p : PHg,n→Mg,n. On s’intéresse aux poussés-en-avant des classes [PAg,Z]
par le morphisme p. On prouve que ces classes de cohomologie dans H∗(Mg,n,Q)
sont encore des classes tautologiques.

1.6. Différentielles d’ordres supérieurs et classes de Prym-Tyurin

Soient g > 1 et k > 1. Nous allons considérer le projectivisé de l’espace des
k-différentielles PΩ(k)

g →Mg. L’espace PΩ(k)
g contient un ouvert dense U des dif-

férentielles aux zéros simples définies sur des courbes lisses. Soit (C,w) un élément
de U . On peut associer à (C,w) un revêtement cyclique f : Ĉ→C de degré k, où

Ĉ = {(x,v)|x ∈C, v ∈ T ∗x C, vk = w}.
Ce revêtement est totalement ramifié au dessus des zéros simples de w. La courbe
Ĉ est lisse de genre ĝ = k2(g − 1) + 1. L’action de Z/kZ sur le revêtement est don-
née par ρ j : (x,v) 7→ (x,ρ jv), où ρ = e

2iπ
k . On note σ : Ĉ→ Ĉ l’automorphisme Ĉ

correspondant à j = 1. L’existence du revêtement Ĉ → C permet de définir une
application

ν̂ : U →Mĝ,

(C,w) 7→ Ĉ.

On considère le tiré-en-arrière du fibré de Hodge Hĝ par l’application ν̂. L’auto-
morphisme σ induit un endomorphisme σ∗ du fibré vectoriel ν̂∗Hĝ donné par u 7→
σ∗u, où u est un element de H0(Ĉ,ωĈ). L’endomorphisme σ∗ vérifie (σ∗)k = Id.
D’où la décomposition

ν̂∗Hĝ =
j−1⊕
j=0

Λ( j),

où Λ( j) est le fibré propre de ν̂∗Hĝ correspondant à la valeur propre ρ j = e
2iπ j

k .

Définition 1.6.1. Les fibrés vectoriels Λ( j) sont appelés fibré vectoriels de Prym-
Tyurin. La classe de Prym-Tyurin λ( j)

PT est la première classe de Chern de Λ( j) dans
le groupe de Picard rationnel de U .

Dans le chapitre 3 nous allons construire une extension de la classe de Prym-
Tyurin à l’espace PΩ(k)

g tout entier et l’exprimer dans une base standard du groupe
de cet espace.

Proposition 1.6.2. Une base standard du groupe de Picard PΩ(k)
g est donnée par

(ξ,λ,δ0, δ1, . . . , δbg/2c) où :

• la classe ξ est la première classe de Chern du fibré tautologique O(1)→
PΩ(k)

g ;
• la classe λ est la première classe de Chern deHg;
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• pour 1 ≤ i ≤ bg/2c, la classe δi est la classe du diviseur de bord dont le
point générique est une courbe à un noeud séparant des composantes de
genre i et g − i;
• la classe δ0 est la classe du diviseur des courbes possédant un noeud non

séparant.

(par abus de notation, on utilise les même notations δi et λ pour les classes dans
le groupe de picard de Mg et leur tirés-en-arrière dans le groupe de Picard de
PΩ(k)

g ).

Pour formuler les résultats nous introduisons également la classe δdeg : il s’agit
de la classe Poincaré-duale du lieu des k-différentielles avec au moins un zéro
multiple.

Théorème 1.6.3. On a les égalités suivantes dans le groupe de Picard de PΩ(k)
g

δdeg = 12k(k + 1) λ + 2(g − 1)(2k + 1) ξ − k(k + 1)
[g/2]∑
i=0

δi

λ(k− j)
PT = (6 j2

+ 6 j + 13) λ +
g − 1

k
j(2 j + 1)ξ − j( j + 1)

[g/2]∑
i=0

δi + a j δdeg

où

a j =

{
2 j−k

2k si (k − 1)/2< j < k,

0 sinon.

1.7. Nombres d’Hurwitz

Au chapitre 4, nous exposerons des relations entre les espaces de différentielles
et la géométrie énumérative. La théorie de Hurwitz s’intéresse aux nombres de
revêtements de courbes lisses avec singularités fixés. Nous verrons que l’on peut
exprimer certains nombres de Hurwitz comme des nombres d’intersection dans les
espaces de modules de différentielles stables.

1.7.1. Définition générale. Soit X une courbe lisse avec l points marqués
(x1, . . . ,xl). Soit d un entier positif et soit Λ = (µ1, . . . ,µl) une liste de l partitions
de d. Un revêtement de X de type Λ est une paire (C, f : C→ X) où:

• la courbe C est lisse;
• l’application f est de degré d et ramifiée uniquement au dessus des xi. De

plus au dessus de xi le profil de ramification est donné par µi.

Deux revêtement ramifiés (C, f ) et (C′, f ′) sont isomorphes si il existe φ : C ∼→
C′ tel que f ◦ φ = f ′. Le nombre de Hurwitz HX

d (µ1, . . . ,µn) est le nombre de
classes d’équivalence de revêtements ramifiés à de type Λ comptés avec des poids
1/|Aut(C, f )|.

Remarque 1.7.1. Nous avons choisi ici de mettre une structure complexe sur la
surface cible X mais les nombres de Hurwitz ne dépendent pas de celle-ci. Ils ont
une nature purement topologique.
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1.7.2. Nombres de Hurwitz simples. D’abord, on considère une famille plus
restreinte de nombres de Hurwitz que l’on appelle nombres de Hurwitz simples.
Soit g et n des entiers positifs tels que 2g − 2 + n > 0 et d ≤ 0. La courbe cible est
P1, la courbe source est de genere g et on ne spécifie qu’un seul profil de ramifica-
tion µ = (k1, . . . ,kn) (au dessus de l’infini par exemple) et tous les autres profils de
ramification sont simples. Autrement dit, les nombres de Hurwitz simples sont les
nombres

hg,d(k1, . . . ,kn) = HP1

d

µ, (2,1,1 . . .), . . . , (2,1,1 . . .)︸ ︷︷ ︸
K

 ,
où K est déterminé par la formule de Riemann-Hurwitz K = 2g − 2 + d + n.

La formule ELSV est une égalité entre les nombres d’Hurwitz simples et des
nombres d’intersection dans l’espace des modules de courbes stables. On note λi

la i-ème classe de Chern du fibré de Hodge.

Theorem 1.7.2. On a l’égalité suivante

hg,d(k1, . . . ,kn) =
2g − 2 + d + n
|Aut(k1, . . . ,kn)|

n∏
i=1

kki
i

ki!

∫
Mg,n

1 −λ1 + . . .+ (−1)gλg∏n
i=1(1 − kiψi)

.

Ce théorème a d’abord été prouvé dans [20] puis dans [36] par des techniques
de localisation.

1.7.3. Généralisations de ELSV. A partir de la formule ESLV plusieurs ré-
sultats importants on été établi et des généralisations ont été prouvées (ou conjec-
turées).

• Dans [46], Maxim Kazarian a utilisé la formule ELSV pour montrer que
les intégrales de Hodge vérifient la hiérarchie KP. Il en déduit la première
preuve algébrique du théorème de Kontsevich-Witten.
• Dans [63], Okounkov et Pandharipande ont donné une expression des

invariants de Gromov-Witten stationnaires de n’importe quelle courbe al-
gébrique en fonction de nombres d’Hurwitz. Ce résultat est connu comme
la correspondance Gromov-Witten/Hurwitz au travers de la formule de
cycles complétés.
• Dans [34], Goulden, Jackson et Vakil ont conjecturé une formulaire à la

formule ELSV dans le cas des nombres d’Hurwitz doubles totalement
ramifiés au dessus de 0 (profils de ramification spécifiés au dessus de 0
et∞). Ils ont conjecturé que ces nombres de Hurwitz doubles devraient
être exprimés comme des nombres d’intersections dans un “groupe de Pi-
card universel” au-dessus de l’espace des modules de courbes. Plusieurs
propriétés combinatoires de la conjecture GJV ont été mises en lumière
(voir [74] ou [9]).
• La formulel r-ELSV est un formule conjecturelle qui relie des nombres

d’Hurwitz avec cycles complétés de longeur r + 1 et des nombres d’inter-
section dans les espaces de structures r-spin (voir chapitre 5 pour la défi-
nition des espaces de structures spin et [73] pour une présentation détail-
lée de la conjecture).
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1.7.4. Nombres d’Hurwitz et intersection dans les espaces de différen-
tielles. Nous verrons au chapitre 4 une modification de la preuve de la formule
ELSV utilisant des nombres d’intersection dans les espaces des modules de dif-
férentielles stables introduits au chapitre 2. Cette preuve est proche de la preuve
originale mais elle peut être adaptée pour prouver la conjecture GJV en genre 0.
La conjecture GJV en genre 0 était déjà connue mais aucune preuve géométrique
n’existait. La preuve que l’on en donne s’appuie sur une généralisation de la for-
mule des cycles complétés en genre 0 déjà observée dans [47].

1.8. Cycles de double ramification

Soit g et n tels que 2g−2+n> 0. Soit k∈N et µ = (k1, . . . ,kn) une liste d’entiers
(positifs ou négatifs) telle que la somme des ki soit égale à 2k(g − 1). Nous allons
nous intéresser au lieuHk

g(µ)⊂Mg,n défini par{
(C,x1, . . . ,xn) ∈Mg,n ω⊗k

C 'O
( n∑

i=1

ki · xi
)}

.

On notera Hk
g(µ) la clôture de Hk

g(µ) dans Mg,n. Nous aller étudier les classes

[Hk
g(µ)]∈ A∗(Mg,n) ou H∗(Mg,n). Pour k = 0, Faber et Pandhariapande ont prouvé

que les classes [H0
g(µ)] sont tautologiques (voir [26]). Pour k = 1 nous verrons que

ces classes sont également tautologiques (et calculables) d’après le théorème du
chapitre 2. Pour k > 1 le problème est ouvert.

Un problème important est de savoir s’il existe une expression fermée des
classes [Hk

g(µ)]. En effet, ni les méthodes développées dans [26] ni celles dévelop-
pées dans cette thèse ne permettent de donner une expression simple des classes
[Hk

g(µ)]. Il est donc difficile pour l’instant de dégager une structure générale de
l’expression de ces classes.

Applications élastiques. On suppose ici que k = 0. Il existe une compactifi-
cation alternative des espaces de diviseurs principaux H0

g(µ). Ce sont les espaces
d’applications élastiques M∼g,n(P1,µ) (voir chapitre 5 pour les définitions). Ces
espaces possèdent une théorie de l’obstruction parfaite et un cycle fondamental
virtuel [M∼g,n(P1,µ)]vir de dimension virtuelle 2g − 3 + n (au sens de Behrend et
Fantechi, voir [5]). De plus les espaces d’applications élastiques ont un morphisme
d’oubli p :M∼g,n(P1,µ)→Mg,n. Le cycle de double ramification est la classe

DR0
g(µ) = p∗[M

∼
g,n(P1,µ)]vir ∈ Ag(Mg,n).

La différence entre DR0
g(µ) et [H0

g(µ)] est supportéeMg,n \Mg,n puisqu’il s’agit
de deux compactifications deH0

g(µ). L’expression des cycles de Double Ramifica-
tion a été donnée dans [42]. Cette expression permet notamment de prouver que
ces classes dépendent polynomialement des ki et pourrait avoir des applications en
théorie symplectique des champs (voir [21] et [39]).

Cycles de double ramification pour k > 0. Des généralisations des cycles
de double ramification ont été définis pour des valeurs de k strictement positives
(voir [28], [38], ou [72]). Par ailleurs un ensemble de conjectures donnent des
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expressions des cycles de double ramification généralisés similaires à celle des cy-
cles DR0

g(µ) prouvé dans [42] et les relient aux classes de strates des différentielles
et des différentielles d’ordre supérieur. Nous exposerons précisément au dernier
chapitre le contenu de ces conjectures.

Pour k = 1, les techniques développée au chapitre 2 permettent de tester la
validité de ces conjectures cas par cas.



CHAPTER 2

Cohomology classes of strata of differentials

We introduce a space of stable meromorphic differentials with poles of pre-
scribed orders and define its tautological cohomology ring. This space, just as the
space of holomorphic differentials, is stratified according to the set of multiplici-
ties of zeros of the differential. The main goal of this chapter is to compute the
Poincaré-dual cohomology classes of all strata. We prove that all these classes are
tautological and give an algorithm to compute them.

In a second part of the last section of the chapter we study the Picard group of
the strata. We use the tools introduced in the first part to deduce several relations
in these Picard groups.

This chapter is mostly based on the paper [71].

2.1. Different formulations of the problem

2.1.1. Stratification of the Hodge Bundle. Let g ≥ 1. LetMg be the space
of smooth curves of genus g. The Hodge bundle,

Hg→Mg

is the vector bundle whose fiber over a point [C] ofMg is the space of holomorphic
differentials on C. A point ofHg is then a pair ([C],α), where C is a curve and α a
differential on C. We will denote by PHg→Mg the projectivization of the Hodge
bundle.

Notation 2.1.1. Let Z (for zeros) be a vector (k1,k2, . . . ,kn) of positive integers
satisfying

n∑
i=1

ki = 2g − 2.

We will denote by PHg(Z) the subspace of PHg composed of pairs ([C],α) such
that α is a differential (defined up to a multiplicative constant) with zeros of orders
k1, . . . ,kn.

The locus PHg(Z) is a smooth orbifold (or a Deligne-Mumford stack), see for
instance, [67]. However, neither PHg, nor the strata PHg(Z) are compact.

The Hodge bundle has a natural extension to the space of stable curves:

Hg→Mg.

We recall that abelian differentials over a nodal curve are allowed to have simple
poles at the nodes with opposite residues on the two branches.

The space PHg is compact and smooth, and we can consider the closures
PHg(Z) of the strata inside this space. Computing the Poincaré-dual cohomology
classes of these strata is our motivating problem. In the present Chapter we solve

23
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this problem and present a more general computation in the case of meromorphic
differentials.

2.1.2. Stable differentials. On a fixed smooth curve C with one marked point x
consider a family of meromorphic differentials with one pole of order p at x, such
that the leading coefficient of the differential at the pole tends to 0. In order to
construct a compact moduli space of meromorphic differentials we need to decide
what the limit of a family like that should be. One natural idea is to include differ-
entials with poles of orders less than p in the moduli space. It turns out, however,
that a more convenient way to represent the limit is to allow the underlying curve
to bubble at x; in other words, to allow differentials defined on semi-stable curves.

A semi-stable curve is a nodal curve with smooth marked points such that ev-
ery genus 0 component of its normalization contains at least two marked points
and preimages of nodes (instead of at least three for stable curves). In the example
above, the limit of the family would be a meromorphic differential defined on a
semi-stable curve with one unstable component and on marked point x on it. The
curve maps to C under the contraction of the unstable component. The meromor-
phic differential still has a pole of order exactly p at x.

Definition 2.1.2. Let n,m ∈ N and let P (for poles) be a vector (p1, p2, . . . , pm) of
positive integers. A stable differential of type (g,n,P) is a tuple (C,x1, . . . ,xn+m,α)
where (C,x1, . . . ,xn+m) is a semi-stable curve with n + m marked points and α is a
meromorphic differential on C, such that

• the differential α has no poles outside the m last marked points and nodes;
• the poles at the nodes are at most simple and have opposite residues on

the two branches;
• if pi > 1 then the pole at the marked point xn+i is of order exactly pi; if

pi = 1 then xi can be a simple pole, a regular point, or a zero of any order;
• the group of isomorphisms of C preserving α and the marked points is

finite.

Definition 2.1.3. A family of stable differentials is a tuple (C→ B,σ1, . . . ,σn,α)
where (C → B,σ1, . . . ,σn) is a family of marked semi-stable curves and α is a
meromorphic section of the relative dualizing line bundle ωC/B such that for each
geometric point b of B, the tuple (Cb,σ1(b), . . . ,σn(b),α|Cb) is a stable differential.

The stack Hg,n,P of stable differentials of type (g,n,P) is the category of fami-
lies of stable differentials of type (g,n,P), fibered over the category of C-schemes.

Proposition 2.1.4. The moduli space Hg,n,P is a smooth Deligne-Mumford (DM)
stack. It is of dimension 4g − 4 +

∑
pi if P is non-empty and 4g − 3 otherwise.

The space Hg,n,P carries a natural C∗-action given by the multiplication of the
differential by non-zero scalars. Besides, there exists a forgetful map Hg,n,P →
Mg,n+m that maps a family stable differentials to the stabilization of its underlying
family of semi-stable curves. However, the space Hg,n,P does not have a natural
vector bundle structure because there is no natural definition of the sum of two
differentials with fixed orders of poles.
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We will construct a partial coarsification of Hg,n,P that has the structure of an
orbifold cone overMg,n+m.

Proposition 2.1.5. There exists a unique DM stack Hg,n,P fitting in the following
commutative triangle

Hg,n,P //

$$

Hg,n,P

π
��

Mg,n+m.

and satisfying

• the morphism π is schematic, i.e. for any C-scheme U with a morphism
U→Mg,n+m, the pull-backHg,n,P ×

Mg,n+m

U is representable by a C-scheme;

• for any such U →Mg,n+m, the scheme Hg,n,P ×
Mg,n+m

U is the coarse space

of Hg,n,P ×
Mg,n+m

U.

Definition 2.1.6. The spaceHg,n,P is the called the space of stable differentials.

Proposition 2.1.7. The space of stable differentials is an orbifold cone over
Mg,n+m. Besides the spaceHg,n,P and its projectivization are normal.

We prove these propositions in Section 2.2, where we will also give a definition
of an orbifold cone. At present it suffices to note that the cone structure on Hg,n,P

allows one to define a projectivization PHg,n,P, a tautological line bundle over the
projectivization, and the Segre class. Besides, the morphism Hg,n,P → Hg,n,P is
C∗-equivariant.

Remark 2.1.8. The stack Hg,n,P can be endowed with the structure of an orbifold

cone over a different moduli spaceMg,n,P. The spaceMg,n,P is a
(

m∏
i=1

Z/(pi − 1)Z
)

-

gerb over Mg,n+m. The fibers of Hg,n,P →Mg,n,P are vector spaces, but the C∗-
action on these spaces has nontrivial weights.

One can define the projectivization of Hg,n,P and the tautological line bundle
over this projectivization. Then we have a map PHg,n,P → PHg,n,P which is a
bijection between the geometric points of these two stacks.

Therefore we have natural isomorphisms H∗(PHg,n,P,Q)'H∗(PHg,n,P,Q) and
A∗(PHg,n,P,Q)' A∗(PHg,n,P,Q). Thus, all the results of this text are valid for both
spaces.

While the space Hg,n,P is the more natural choice for the moduli space of dif-
ferentials, in the present Chapter we prefer to work with Hg,n,P in order to have
Mg,n+m as the base of our cone.

Notation 2.1.9. Let P = (p1, . . . , pm) be a vector of positive integers and Z =
(k1, . . . ,kn) a vector of nonnegative integers. We denote by Ag,Z,P ⊂ Hg,n,P, the
locus of stable differentials (C,x1, . . . ,xn+m,α) such that C is smooth and α has ze-
ros exactly of orders prescribed by Z at the first n marked points. The locus Ag,Z,P is
invariant under the C∗-action. We denote by PAg,Z,P the projectivization of Ag,Z,P.
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Moreover, we denote by Ag,Z,P (respectively PAg,Z,P) the closures of Ag,Z,P (resp.
PAg,Z,P) in the spaceHg,n,P (respectively in PHg,n,P).

2.1.3. The tautological ring of PHg,n,P. Let P be a vector of positive integers.
From now on, unless specified otherwise, we will denote by π :Mg,n+1→Mg,n the
forgetful map and by p :Hg,n,P→Mg,n+m the projection from the space of stable
differentials toMg,n+m. Moreover we use the same notation p : PHg,n,P→Mg,n+m

for the projectivized cone. Let

L =O(1)→ PHg,n,P

be the dual of the tautological line bundle of PHg,n,P, and let ξ = c1(L).

Definition 2.1.10. The tautological ring of PHg,n,P is the subring of the cohomol-
ogy ring H∗(PHg,n,P,Q) generated by ξ and the pull-back of RH∗(Mg,n+m) under
p. We denote it by RH∗(PHg,n,P).

Remark 2.1.11. We have ξd = 0 for d > dim(PHg,n,P). Therefore the tautological
ring of PHg,n,P is a finite extension of the tautological ring ofMg,n+m.

Example 2.1.12. In absence of poles, the Hodge bundle is a vector bundle and we
have

RH∗(PHg,n) = RH∗(Mg,n)[ξ]/(ξg
+λ1ξ

g−1
+ . . .+λg).

Proposition 2.1.13. The Segre class of the coneHg,n,P→Mg,n+m equals
m∏

i=1

(pi − 1)pi−1

(pi − 1)!
·

1 −λ1 + . . .+ (−1)gλg∏m
i=1(1 − (pi − 1)ψi)

.

This proposition will be proved in Section 2. An important corollary of this
proposition is that the push-forward of a tautological class from PHg,n,P toMg,n+m

is tautological.

2.1.4. Statement of the results. Now, we have all elements to state the main
theorems of the present Chapter.

Theorem 2.1.14. For any vectors Z and P, the class
[
PAg,Z,P

]
introduced in No-

tation 2.1.9, lies in the tautological ring of PHg,n,P and is explicitly computable.

The main ingredient to prove this theorem will be the induction formula of
Theorem 2.3.41.

Definition 2.1.15. Let V be a vector with integral coefficients, in the present Chap-
ter we will denote by |V | the sum of elements of V and by `(V ) the length of V .

Given g and P, we will say that Z is complete if it satisfies |Z|− |P| = 2g − 2. If
Z is complete, we denote by Z −P the vector (k1, . . . ,kn,−p1, . . . ,−pm) (in particular
if P is empty, then we only impose |Z| = 2g − 2).

Restricting ourselves to the holomorphic case and applying the forgetful map
of the marked points we obtain the following corollary.

Theorem 2.1.16. For any complete vector Z, the class
[
PHg(Z)

]
introduced in

Notation 2.1.1 lies in the tautological ring of PHg and is explicitly computable.
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Remark 2.1.17. As a guideline for the reader, it will be important to under-
stand that the holomorphic case in Theorem 2.1.14 cannot be proved without using
strictly meromorphic differentials. Thus Theorem 2.1.16 is a consequence of a
specific case of Theorem 2.1.14 but one cannot avoid to prove Theorem 2.1.14 in
its full generality.

The second important corollary is obtained by forgetting the differential in-
stead of the marked points. Let P = (p1, . . . , pm) be a vector of poles and Z =
(k1, . . . ,kn) be a complete vector of zeros. We define Hg(Z − P) ⊂Mg,n+m as the
locus of points (C,x1, . . . ,xn) that satisfy

ωC
(

−

n∑
i=1

kixi +

m∑
j=1

p jxn+ j
)
'OC.

We denote byHg(Z − P) the closure ofHg(Z − P) inMg,n+m.

Theorem 2.1.18. For any vectors Z and P, the class
[
Hg(Z − P)

]
lies in the tauto-

logical ring ofMg,n+m and is explicitly computable.

Remark 2.1.19. Theorems 2.1.14, 2.1.16 and 2.1.18 are stated for the Poincaré-
dual rational cohomology classes. However, all identities of the present Chapter
are valid in the Chow groups.

In a second part of the text (Section 2.5) we will consider the rational Picard
group of the space Hg(Z − P). We will define several natural classes in this Picard
group and apply the tools developed in the first part of the Curve to deduce a series
of relations between these classes (see Theorem 2.5.5).

2.1.5. An example. Here we illustrate the general method used in the present
Chapter by computing the class of differentials with a double zero

[
PHg(2,1, . . . ,1)

]
.

This computation was carried out by D. Zvonkine in an unpublished note [84] and
was the starting point of the present work.

We begin by marking a point, i.e. we study the space PHg,1 of triples (C,x1, [α])
composed of a stable curve C with one marked point x1 and an abelian differential
α modulo a multiplicative constant. Recall that PAg,(2) ⊂ PHg,1 is the closure of
the locus of smooth curves with a double zero at the marked point. In order to
compute [PAg,(2)], we consider the line bundle

L⊗L1 ' Hom(L∨,L1)

over PHg,1. (Recall that L∨ is the tautological line bundle of the projectivization
PHg,1 and L1 is the cotangent line bundle at the marked point x1.) We construct a
natural section s1 of this line bundle,

s1 : L∨ → L1

α 7→ α(x1).

Namely, an element of L∨ is an abelian differential on C, and we take its restriction
to the marked point.
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The section s1 vanishes if and only if the marked point is a zero of the abelian
differential. Thus we have the following identity in H2(PHg,1):

[PAg,(1)] = [{s1 = 0}] = c1(L⊗L1) = ξ +ψ1.

Now we restrict ourselves to the locus {s1 = 0} and consider the line bundle

L⊗L⊗2
1 .

We build a section s2 of this new line bundle. An element of L∨|{s1=0} is an abelian
differential with at least a simple zero at the marked point x1. Its first derivative at
x1 is then an element of L⊗2

1 (we can verify this assertion using a local coordinate
at x1).

As before, s2 is equal to zero if and only if the marked point is at least a
double zero of the abelian differential. However, {s2 = 0} is composed of three
components:

• PAg,(2);
• the locus ae where the marked point lies on an elliptic component at-

tached to the rest of the stable curve at exactly one point and the abelian
differential vanishes identically on the elliptic component;
• the locus ar where the marked point lies on a “rational bridge”, that is,

a rational component attached to two components of the stable curve
that are not connected except by this rational component (in this case
the abelian differential automatically vanishes on the rational bridge).

We deduce the following formula for [PAg,(2)]:

[PAg,(2)] = [{s2 = 0}] − [ae] − [ar]

= (ξ +ψ1)(ξ + 2ψ1) − [ae] − [ar]

= ξ2
+ 3ψ1ξ + 2ψ2

1 − [ae] − [ar].

Remark 2.1.20. We make a series of remarks on this result.

• To transform the above considerations into an actual proof we need to
check that the vanishing multiplicity of s2 along all three components
equals 1. We will prove this assertion and its generalization in Section 3.
• Denote by π : PHg,1 → PHg the forgetful map, by δsep the boundary

divisor of composed of curves with a separating node, and δnonsep the
boundary divisor of curves with a nonseparating node. Let us apply the
push-forward by π to the above expression of [PAg,(2)].

– The term π∗(ξ2) vanishes by the projection formula, since it’s a push-
forward of a pull-back.

– The term π∗(3ξψ1) gives 3κ0ξ = (6g − 6)ξ by the projection formula.
– The term π∗(2ψ2

1) gives 2κ1.
– The term π∗([ae]) vanishes, because the geometric image of ae is of

codimention 2 in PHg.
– The term π∗([ar]) gives δsep since π induces a degree one map from

ar onto δsep.
Thus we get

[PH(2,1, . . . ,1)] = π∗[PAg,(2)] = (6g − 6)ξ + 2κ1 − δsep.
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Using the relation κ1 = 12λ1 −δsep −δnonsep onMg (see, for example, [1],
chapter 17), we have

[PH(2,1, . . . ,1)] = (6g − 6)ξ + 24λ1 − 3δsep − 2δnonsep.

This formula was first proved by Korotkin and Zograf in 2011 using an
analysis of the Bergman tau function [57]. Dawei Chen gave another
proof of this result in 2013 using test curves [13].
• In general, to prove Theorem 2.1.14 we will work by induction. Let Z =

(k1,k2, . . . ,kn) and P be vectors of positive integers. Let Z′ = (k1, . . . ,ki +

1, . . . ,kn). Then we will show that[
PAg,Z′,P

]
= (ξ + (ki + 1)ψi)

[
PAg,Z,P

]
− boundary terms.

The computation of these boundary terms is the crucial part of the proof.

2.2. Stable differentials

In this section, we study the space of stable differentials. We construct the
space of stable differentials and compute its Segre class. We also define stable
differentials on disconnected curves.

2.2.1. The cone of generalized principal parts.
2.2.1.1. Orbifold cones. We follow here the approach of [20]. Let X be a

projective DM stack.

Definition 2.2.1. An orbifold cone is a finitely generated sheaf of graded OX -
algebras S = S0⊕S1⊕S2⊕ . . . such that S0 =OX .

Remark 2.2.2. This definition of cone is weaker than the classical definition of
Fulton (see [31]) because we do not ask that S be generated by S1. In the classical
definition, a cone is a subvariety of a vector bundle (the dual of S1) given by ho-
mogeneous equations. Its projectivization is a subvariety of a bundle of projective
spaces. In the orbifold case, the cone is, again, a suborbifold of a vector bundle, but
is now given by quasi-homogeneous equations. Its projectivization is a suborbifold
of the corresponding bundle of weighted projective spaces, which carries a tauto-
logical line bundle in the orbifold sense. Thus the projectivization PC of a cone is
an orbifold and carries a natural orbifold line bundle O(1), the dual of the tauto-
logical line bundle. We denote p : PC = Proj(S)→ X and ξ = c1(O(1)). Let C → X
be a pure-dimensional cone and r the rank of the cone defined as dim(C) − dim(X).
The i-th Segre class of C is defined as

si = p∗(ξr+i−1) ∈ H2i(X ,Q).

Example 2.2.3. Let us consider the graded algebra C[x,y,z] such that x is an
element of weight 2, y is an element of weight 3 and z is an element of weight
1. This graded algebra is not generated by its degree 1 elements. The associated
projectivized cone over a point is the weighted projective space P(2,3) which is the
quotient of (C3)∗ by C∗ with the action:

λ · (x,y,z) = (λ2x,λ3y,λz).
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Example 2.2.4. More generally, consider a sheaf of algebras of the formOX⊗C S,
where S is a graded algebra over C. The projective spectrum of this sheaf is a direct
product of X with Proj(S). We call this a trivial orbifold cone.

2.2.1.2. Cone of generalized principal parts.

Definition 2.2.5. Let p be an integer greater than 1. A principal part of order
p at a smooth point of a curve is an equivalence class of germs of meromorphic
differentials with a pole of order p ; two germs f1, f2 are equivalent if f1 − f2 is a
meromorphic differential with at most a simple pole.

First, we parametrize the space of principal parts at a point. Let z be a local
coordinate at 0 ∈ C. A principal part at 0 of order p is given by:[(

u
z

)p−1

+ a1

(
u
z

)p−2

+ . . .+ ap−2

(
u
z

)]
dz
z

with u 6= 0. However, given a principal part, the choice of (u,a1, . . . ,ap−2) is not
unique. Indeed there are p−1 choices for u given by the ζ` ·u (with ζ` = exp( 2iπ·`

p−1 ),
for 0 ≤ ` ≤ p − 1) and, once the value of u is chosen, the ai’s are determined
uniquely. Therefore the coordinates (u,a1, . . . ,ap−2) parametrize a degree p − 1
covering of the space of principal parts. This motivates the following definition.

Definition 2.2.6. Assign to u the weight 1/(p − 1) and to a j the weight j/(p − 1).
The graded algebra S ⊂ C[u,a1, . . . ,ap−2] spanned by the monomials of integral
weights is called the algebra of generalized principal parts and P = Spec(S) is the
space of generalized principal parts.

The space P is the quotient of Cp−1 by the group Z
/

(p−1)Z, which, from now
on, we will denote by Zp−1 for shortness. An element ζ ∈ Zp−1 acts by

ζ · (u,a1, . . . ,ap−2) = (ζu, ζa1, . . . , ζ
p−2ap−2).

Moreover, the natural action of C∗ on P is given by

λ · (u,a1, . . . ,ap−2) = (λ
1

p−1 u,λ
1

p−1 a1, . . . ,λ
p−2
p−1 ap−2).

Note that this action is not well-defined on the covering space Cp−1, but is well
defined on its Zp−1 quotient P .

Notation 2.2.7. Denote by Iu ⊂ S the ideal of polynomials divisible by u. Denote
by A⊂P the suborbifold defined by Iu.

The suborbifoldA⊂P is the Weil divisor obtained as the image of the Cartier
divisor {u = 0} ⊂ Cp−1 under the quotient of Cp−1 by the action of Zp−1. The
divisor (p − 1)A is the Cartier divisor given by the equation up−1 = 0. (Note that
up−1 lies in S while u does not.) The space of principal parts embeds into P as the
complement of A.

Lemma 2.2.8. A change of local coordinate z induces an isomorphism of S that
preserves the grading and acts trivially on the quotient algebra S/Iu.

PROOF. Let z = f (w) = α1w +α2w2 + . . . be a local coordinates change. We
denote by (u′,a′1, . . . ,a

′
p−2) the parameters of the presentation of principal parts in
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coordinate w. We have the transformation:

u 7→ α1u

a1 7→ a1 +γ1,1u

a2 7→ a2 +γ2,1ua1 +γ2,2u2

...

where the γi, j are polynomials in α1,α2, . . . depending only on the order of the
principal part. By taking u to be 0, we see that the coordinates (a1, . . . ,ap−2) of A
are independent of the choice of local coordinate. �

Remark 2.2.9. In Section 2.2.2 we will see that the locus A corresponds to the
appearence of a semi-stable bubble of the underlying curve C at the ith marked
point. The coordinate on the bubble is w = u/z.

Remark 2.2.10. The cone of principal parts of differentials differs from the cone
of principal parts of functions of [20] only by the coefficients γi, j.

Now, let g,n be nonnegative integers such that 2g − 2 + n > 0. Let i ∈ [[1,n]]
and pi ≥ 2. We denote by Pi the following sheaf of graded algebras overMg,n.

Pick an open chart U ⊂Mg,n together with a trivialization of a tubular neigh-
borhood of the ith section σi of the universal curve over U . In other words, denoting
by ∆ the unit disc, we choose an embedding

U×∆ ↪→Cg,n

commuting with U ↪→Mg,n and such that U×{0} is the i-th section of the univer-
sal curve. The sheaf Pi over U is given by Pi(U) =OU ⊗S.

Now, given two overlapping charts U and V we need to define the gluing map
between the sheaves on their intersection. To do that, denote by z the coordinate
on ∆ in the product U ×∆ and by w the coordinate on ∆ in the product V ×∆.
Over the intersection U ∩V we get a change of local coordinates z(w). We use this
change of local coordinate and the constants γi, j from Lemma 2.2.8 to construct an
identification between the two algebras Pi(U)|U∩V and Pi(V )|U∩V .

Note that the sheaf of ideals Iu is well-defined and the quotients S/Iu are iden-
tified with each other in a canonical way that does not depend on the local coordi-
nates z and w.

We denote by P i = Spec(Pi) the spectrum of Pi and by Ai = Spec(Pi/Iu) the
spectrum of the quotient. The latter is a trivial cone overMg,n.

Proposition 2.2.11. The cone P i and its projectivization are normal.

PROOF. Indeed the spaceMg,n is smooth and the sheaf of fractions of the al-
gebra Pi is the same as the sheaf of fractions of P1

i , thus for all U →Mg,n affine
chart of Mg,n, the domain B = OU ⊗Pi is an integrally closed domain. Indeed
suppose that f is a fraction of B such that a polynomial with coefficient in B sat-
isfies Q(B) = 0. Then for an element a ∈ B1, we have that aQ is polynomial with
coefficient in B1 (because every element of B is a fraction of elements of B1) and
aQ( f ) = 0 with f a fraction of B1. Therefore f is an element of B1, thus of B. �
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Lemma 2.2.12. The cone Ai is the product ofMg,n with the weighted projective
space with weights ( 1

pi−1 , . . . ,
pi−2
pi−1 ) quotiented by the action of Zpi−1. Moreover the

Segre classes of Ai and P i are given by

s(Ai) =
(pi − 1)pi−2

(pi − 1)!

s(P i) =
(pi − 1)pi−1

(pi − 1)!
· 1

1 − (pi − 1)ψi
.

PROOF. The proof is based on the same arguments as for the cone of principal
parts of functions. The section upi−1 is a section of the line bundle L−⊗(pi−1)

i which
vanishes with multiplicity pi − 1 along Ai. �

2.2.1.3. Stack of generalized principal parts. In the above paragraph we have
defined the cone of generalized principal parts which is a normal scheme over
Mg,n. We introduce here another approach to the quotient by the Zpi−1-action. Let
P̃i be the sheaf of algebra defined locally by

P̃i(U) =OU [u,a1, . . . ,api−2]

where U is a chart with a trivialization of a tubular neighborhood of the i-th section
of the universal curve and the coordinates (u,a1, . . . ,api−2) are defined as above.

Definition 2.2.13. The stack of generalized principal parts Pi is the stack quotient

Spec(P̃i)/Zpi−1.

By construction we have the following proposition.

Proposition 2.2.14. For all schemes U with a map U→Mg,n, the scheme U×Mg,n

Pi is the coarse space of U×Mg,n
Pi.

Proposition 2.2.15. The stack of generalized principal parts is a smooth DM
stack.

PROOF. The spaceMg,n is a smooth DM stack and Pi is locally the quotient
of an affine smooth scheme overMg,n by a finite group. �

2.2.1.4. Cones of generalized principal parts and jet bundles. From now on
in the text, unless otherwise mentioned, for any family of semi-stable curves C→ S
we denote by ω the relative dualizing sheaf ωC/S.

Definition 2.2.16. Let π : Cg,n →Mg,n be the universal curve and (σi)1≤i≤n :
Mg,n→ Cg,n the global sections of marked points. Let 1 ≤ i ≤ n and pi ≥ 1. The
vector bundle Ji→Mg,n of polar jets of order pi at the i-th marked point is defined
as the quotient

Ji = R0π∗ (ω(piσi))
/

R0π∗ (ω(σi)) .

We fix 1 ≤ i ≤ n and pi > 0. The bundle of polar jet of order pi is a vector
bundle of rank pi − 1. As before, we consider an open chart U of Mg,n with a
trivialization zi of a tubular neighborhood of the section σi. Over the chart U the
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jet bundle is trivial. Indeed an element of Ji over U is given by[
b0

zpi−1
i

+ . . .+
bpi−2

zpi−2
i

]
dzi

zi
.

Thus, the jet bundle Ji restricted to U is given by Spec(OU [bi
0, . . . ,bpi−2]). Recall

that, using the trivialization zi we have defined coordinates u,a1, . . . ,api−2 such that
Pi(U) is the sub-algebra of

OU [u,a1, . . . ,api−2]

generated by monomials with integral weights. We define the following morphism
of graded algebras over OU

φi(U) : Sym∗(Ji ∨)(U) → Pi(U)

b0 7→ upi−1,

b j 7→ upi−1− ja j (for 1≤ j ≤ pi − 2).

The morphism φi(U) is defined for a chart U with a choice of trivialization zi. We
can easily check that the φi(U) can be glued into a morphism of sheaves of graded
algebras. Thus we have constructed a morphism of cones

φi : P i→ Ji.

It is important to remark that for pi ≥ 3 the morphism φi is neither surjective
nor injective.

Lemma 2.2.17. We define the following two spaces

P i ⊃ P̃ i =
(
P i \Ai)∪ the zero section,

Ji ⊃ J̃i =
(
Ji \{b0 = 0}

)
∪ the zero section.

The image of the morphism φi is the space J̃i. Moreover, the morphism φi restricted
to P̃ i induces an isomorphism from P̃ i to J̃i.

The proof is a simple check.

Remark 2.2.18. Note in particular that the morphisms φi do not define a morphism
of projectivized cones. Indeed, certain points outside of the zero section of P i are
mapped to zero section of Ji.

2.2.2. The space of stable differentials. Let g,n, and m be nonnegative inte-
gers satisfying 2g − 2 + n + m > 0. Let P = (p1, p2, . . . , pm) be a vector of positive
integers. For all 1≤ i≤m, we denote by Pn+i (respectively Pn+i and Jn+i) the cone
of principal parts (respectively the stack of principal parts and the vector bundle of
polar jets) of order pi at the (n+ i)-th marked point. Let p : Hg,n,P→Mg,n+m be the
space of stable differentials of Definition 2.1.2 together with the forgetful map.

We recall that π : Cg,n+m→Mg,n+m is the universal curve and the (σi)1≤i≤n+m :
Mg,n+m→Cg,n+m are the global sections corresponding to marked points.

Notation 2.2.19. Let KMg,n(P)→Mg,n+m be the vector bundle

R0π∗
(
ω
( m∑

i=1

piσn+i
))
→Mg,n+m.
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It is a vector bundle of rank g − 1 +
∑

pi if P is not empty.

We have the following exact sequence of vector bundles overMg,n+m

(2.2.1) 0→ R0π∗
(
ω
( m∑

i=1

σn+i
))
→ KMg,n(P)→

m⊕
i=1

Jn+i→ 0,

This exact sequence is simply the long exact sequence obtained from the residue
exact sequence.

Proposition 2.2.20. The stack Hg,n,P is isomorphic to the fiber product of KMg,n(P)
and

⊕m
i=1P

n+i over
⊕m

i=1 Jn+i where the map Pn+i → Jn+i is the composition of

maps Pn+i→Pn+i φi→ Jn+i.

PROOF. We denote by H̃g,n,P the fiber product

(2.2.2) H̃g,n,P //

��

⊕m
i=1P

n+i

��
KMg,n(P) //

⊕m
i=1 Jn+i.

We construct the two directions of the isomorphism H̃g,n,P ' Hg,n,P separately.

From Hg,n,P to H̃g,n,P. To construct a morphism F1 : Hg,n,P → H̃g,n,P we define
morphisms Φi : Hg,n,P→Pn+i for all 1≤ i≤ m and χ : Hg,n,P→ KMg,n(P) fitting
in the the diagram (2.2.2).

Let (C→ S,σ1, . . . ,σn+m,α) be a family of stable differentials. Let s→ S be a
geometric point of S and (Cs,x1, . . . ,xn+m,αs) be the stable differential determined
by s. The element Φi(αs) is determined as follows

• If xn+i does not belong to a rational component then Φi(s) is the principal
part at the marked point. It belongs to Pn+i \{u = 0}.
• If xn+i belongs to an unstable rational component, let wn+i be a global

coordinate of the rational component such that: xn+i is at infinity, the
node is at 0 and the term of α in front of wpi−2

n+i dwn+i is −1. Then αs is of
the form

−

(
wpi−1

n+i + a1wpi−2
n+i + . . .+ api−2wn+i + resσn+i(α)

) dwn+i

wn+i

and we set Φi(s) = (0,a1, . . . ,api−2). Indeed the substack {u = 0} is the
quotient of a trivial vector bundle by Zpi−1 and the ai’s are the global
coordinates of this vector bundle.

We will prove that the map Φi depends holomorphically on s. If s is a point of the
first type this is an obvious statement. If s is a point of the second type, let U be a
chart ofMg,n+m with a trivialization zn+i of a tubular neighborhood of σn+i in the
universal curve (see the previous section). Let wn+i be the coordinate of the rational
component. The node between the rational component and the rest of the curve is
parametrized by wn+izn+i = u. The differential α is given by

(2.2.3) α = −

(
wpi−1

n+i + a1wpi−2
n+i + . . .+ api−2wn+i + resσn+i(α) + O

u7→0
(u)
)

dwn+i

wn+i
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in coordinate wn+i and by

(2.2.4) α =

((
u

zn+i

)pi−1

+ . . .+ ai
pi−2

u
zn+i

+ resσn+i(α) + O
zn+i7→0

(zn+i)

)
dzn+i

zn+i

In coordinate zn+i. Therefore the map Φi depends holomorpically on s.
Now, we construct the map χ :Hg,n,P→KMg,n(P). Let (C→ S,σ1, . . . ,σn+m,α)

be a family of stable differentials. We denote by C̃→ S the stabilization of C and
by α̃ =α|C̃. The family (C̃→ S,σ1, . . . ,σn+m, α̃) is a section of ωC/S(

∑
piσn+i), thus

a map S→ KMg,n(P). By construction, the morphisms χ and the (Φi)i=1,...,m fit in
diagram (2.2.2).

From H̃g,n,P to Hg,n,P. Let S be a C-scheme and let S→ H̃g,n,P be a morphism.
By composition with the morphism H̃g,n,P→ KMg,n(P), we get a family of stable
curves C→ S with n + m sections σi and a section α of ωC/S(

∑
piσn+i). The family

S→H̃g,n,P determines also families of generalized principal parts. From the family
of meromorphic differentials α and the principal parts we will construct a family
of stable differentials.

Let zn+i be local trivializations of the tubular neighborhoods of the sections σn+i

of the curve C/S for 1≤ i≤m. Let wn+i be global coordinates of the complex plane.
We denote by (ui,ai

1, . . . ,a
i
pi−2) the standard coordinates of the principal parts Pn+i

obtained from the trivializations zn+i. We construct a family of semi-stable curves
C̃→ S defined by the equation zn+iwn+i = ui. On the curve C̃ we construct a dif-
ferential α̃. This differential is given by the expression (2.2.3) in coordinate wn+i

and by the expression (2.2.4) in coordinate zn+i. The tuple (C̃,σ1, . . . ,σn+m, α̃) is a
family of stable differentials over S.

Therefore we have determined a morphism F2 : H̃g,n,P→ Hg,n,P. By construc-
tion it is the inverse of F1 previously defined. �

The following proposition finishes the proof of Proposition 2.1.4 and thus com-
plete Definition 2.1.3.

Proposition 2.2.21. We denote by Hg,n,P the following fiber product (in the cate-
gory of cones overMg,n+m or in the category of DM-stacks)

(2.2.5) Hg,n,P //

��

⊕m
i=1Pn+i

⊕
φi

��
KMg,n(P) //

⊕m
i=1 Jn+i.

Then space Hg,n,P is the unique space that satisfies the properties of Proposi-
tion 2.1.4.

PROOF. The fact that Hg,n,P satisfies the properties of Proposition 2.1.4 is a
direct consequence of Propositions 2.2.14, 2.2.20. The uniqueness of this stack
follows from the uniqueness of coarse spaces. �

From now on we will denote by stab :Hg,n,P→ KMg,n(P) the vertical projec-
tion in diagram (2.2.5).
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2.2.3. Properties of spaces of stable differentials. We keep the notation g,n,m,
and P of the previous sections. We state here several general properties of Hg,n,P

andHg,n,P that will be needed further in the text.

Proposition 2.2.22. Suppose that P is not empty. Then the spaces Hg,n,P Hg,n,P

are irreducible DM stacks of pure dimension 4g − 4 +
∑

pi and PHg,n,P is a proper
DM stack (of dimension one less). The space Hg,n,P and its projectivization are
normal. The space Hg,n,P is a smooth DM stack.

If P is empty then both Hg,n,P and Hg,n,P are isomorphic to the Hodge bundle,
which is a smooth DM stack of dimension 4g − 3.

PROOF. The first part of the proposition follows from Propositions 2.2.15,
2.2.20, and 2.2.11. The second part is straightforward. �

We consider the following two maps: on the one hand the inclusion of vector
bundles R0π∗

(
ω
(∑m

i=1σn+i
))
→ KMg,n(P), and on the other hand the zero map

R0π∗
(
ω
(∑m

i=1σn+i
))
→
⊕
Pn+i. Then we get an embedding R0π∗

(
ω
(∑m

i=1σn+i
))
→

Hg,n,P by the universal property of the cartesian diagram (2.2.5).

Proposition 2.2.23. For all g,n, and P, we have the following exact sequence of
cones (in the sense of [31] Proposition 4.1.6)

0→ R0π∗
(
ω
( m∑

i=1

σn+i
))
→Hg,n,P→

m⊕
i=1

Pn+i→ 0.

PROOF. By construction, the sheaf of algebra defining Hg,n,P is locally the

tensor product of the sheaves of algebras Sym∨
(

R0π∗
(
ω
(∑m

i=1σn+i
)))

and the

Pn+i. �

The action of C∗ on the space Hg,n,P is determined by multiplication of the
differential by a scalar. Let us give a description of the C∗-fixed locus, i.e. the
locus of points that are invariant under the action of C∗.

Let (C,x1, . . . ,xn+m) be a curve in Mg,n+m. We denote by m′ the number of
entries of P greater than 1. From C we construct a semi-stable curve C̃ as follows.
The curve C̃ has m′ + 1 irreducible component: one main component isomorphic
to C and m′ rational components attached to C at the marked points corresponding
to poles of order greater than 1. We mark points (x′1, . . . ,x

′
n+m) on C̃. The first n

marked points and the points corresponding to poles of order at most 1 are on the
main component and satisfy xi = x′i. The poles of orders greater than one are carried
by the rational components.

Now we define a meromorphic differential α on C̃ by
• the differential α vanishes identically on the main component;
• on an exterior rational component, if we assume that the marked point is

at 0 and the node at∞ then α is given by dz/zpi .

The tuple (C̃,x′1, . . . ,x
′
n+m,α) is a stable differential invariant under the action of C∗.

Indeed, let λ be a scalar in C∗, the differential λα vanishes on the main component
and λdz/zpi is equal to dw/wpi if we use the change of coordinate z = w/λ1/pi for
any pi-th root of λ.
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Conversely any C∗-invariant point of Hg,n,P is of this type. Indeed Hg,n,P is
a cone thus the locus of C∗-invariant points is a section of this cone and we have
constructed this section here.

2.2.4. Residues. Let g,n,m and P be as in the previous sections.

Definition 2.2.24. LetR be the vector subspace of Cm defined by

R = {(r1,r2, . . . ,rm)/r1 + r2 + . . .+ rm = 0}.
The vector space R will be called the space of residues. The residue map is the
following map of cones overMg,n+m

res :Hg,n,P → R
α 7→ (resxn+1(α), resxn+2(α), . . . , resxn+m(α))

where R stands for the trivial cone. We use the same notation for the residue map
res : KMg,n(P)→R. In this case it is a morphism of vector bundles.

These two residue maps fit in the following commutative triangle

(2.2.6) Hg,n,P
stab //

res
%%

KMg,n(P)

res
��
R.

Let H0
g,n,P ⊂ Hg,n,P (respectively KM0

g,n(P) ⊂ KMg,n(P)) be the sub-cone
(resp. sub vector bundle) of differentials without residues.

We recall that the Hodge bundle is by definition equal toHg,n+m = R0π∗ω. The
following sequence of vector bundles overMg,n+m is exact

(2.2.7) 0→Hg,n+m→ R0π∗(ω(
m∑

i=1

σn+i))
res→R→ 0

(this is the exact sequence obtained from the residue exact sequence 0→ωC(
∑

xi)→
ωC → C→ 0). The vector bundle KM0

g,n(P) fits into the following commutative
diagram of vector bundles overMg,n+m:

(2.2.8) 0 // KM0
g,n(P) // KMg,n(P) res // R // 0

Hg,n+m

OO

// R0π∗(ω(
∑m

i=1σn+i))

OO 88

where the central square is cartesian. The first line of diagram (2.2.8) is exact by
exactness of the sequence (2.2.7). Therefore, the cone structure of H0

g,n,P can be

defined equivalently from the cone structure of Hg,n,P or by saying that H0
g,n,P is
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the fiber product

H0
g,n,P

//

��

⊕
Pn+i

��
KM0

g,n(P) //
⊕

Jn+i.

We have the following exact sequence of cones

0→Hg,n+m→H
0
g,n,P→

⊕
Pn+i→ 0.

Remark 2.2.25. Note that we cannot say that sequence

0→H0
g,n,P→Hg,n,P→R→ 0

is exact because exactness for morphism of cones is ill-defined if the first term is
not a vector bundle.

More generally we define the following.

Definition 2.2.26. Let R be a vector subspace of R. HR
g,n,P ⊂Hg,n,P (respectively

KMR
g,n(P) ⊂ KMg,n(P)) to be the sub-cone (resp. sub vector bundle) of differ-

entials with a vector of residues lying in R. We will call R a space of residue
conditions.

Lemma 2.2.27. Let R⊂R be a vector subspace.

• The spaceHR
g,n,P is a closed subcone ofHg,n,P of codimension dim(R/R)

(where we set dim(R/R) = 0 if P is empty)
• The Segre classes ofHR

g,n,P andHg,n,P are equal.

• The Poincaré-dual class of PHR
g,n,P in H∗(PHg,n,P,Q) is given by[

PHR
g,n,P

]
= ξdim(R/R).

PROOF. Let us denote by resR the composition of morphisms Hg,n,P→R→
R/R (we use the same notation for its alter ego for KMg,n(P)). We denote by
HR

g,n+m the kernel of the morphism

R0π∗(ω(
m∑

i=1

σn+i))
resR→ R/R→ 0.

It is a vector bundle of rank g + dim(R). By repeating the above argument, we have
the following exact sequence of cones:

0→HR
g,n+m→H

R
g,n,P→R/R.

We deduce from this exact sequence that:

• the co-dimension ofHR
g,n,P inHg,n,P is dim(R/R);

• the Segre class ofHR
g,n,P is given by

c∗
(
HR

g,n+m

)
· s∗
(⊕

Pn+i
)

(see [31] Proposition 4.1.6).
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Besides, the vector bundleR/R is trivial thus

c∗
(
HR

g,n+m

)
= c∗

(
R0π∗(ω(

m∑
i=1

σn+i))

)
and the Segre class ofHR

g,n,P does not depend on the choice of R.
To prove the last statement, we study the vector bundle O(1)⊗ p∗(R/R)→

PHg,n,P, where we recall that p : PHg,n,P→Mg,n+m is the forgetful map. We have
O(1)⊗ p∗(R/R)'Hom(O(−1), p∗(R/R)). A section of this vector bundle is given
by:

s : α 7→ resR(α).

The vanishing locus of s is PHR
g,n,P which is of codimension dim(R/R). Thus the

Poincaré-dual class of PHR
g,n,P in H∗(PHg,n,P,Q) is given by

d · ctop(O(1)⊗ p∗(R/R)) = d · ξdim(R/R)

where d is a rational number. Besides the cones HR
g,n,P and Hg,n,P have the same

Segre class thus

s0 = p∗
(
ξrk(Hg,n,P)−1

)
= p∗

(
[PHR

g,n,P]ξrk(HR
g,n,P)−1

)
= ds0,

and the coefficient d is equal to 1. �

Proposition 2.2.28. The Segre class ofHg,n,P is given by
m∏

i=1

(pi − 1)pi−1

(pi − 1)!
·

1 −λ1 + . . .+ (−1)gλg∏m
i=1 (1 − (pi − 1)ψi)

.

PROOF. From the above lemma, we have

s∗(Hg,n,P) = s∗(H
0
g,n,P)

= c∗(Hg,n+m)−1 · s∗

(
m⊕

i=n+1

Pn+i

)

= c∗(H
∨
g,n+m) · s∗

(
m⊕

i=n+1

Pn+i

)

=
m∏

i=1

(pi − 1)pi−1

(pi − 1)!
·

1 −λ1 + . . .+ (−1)gλg∏m
i=1 (1 − (pi − 1)ψi)

.

From the third line to the fourth we have used the fact that c(Hg)−1 = c(H∨g ) (see
[62]).

�

2.2.5. Standard coordinates. In this section we describe how to parametrize
differentials with prescribed singularities. We use the notation ∆ρ = {z ∈ C : |z|<
ρ} for the disks of radius ρ∈R+ and Aρ1,ρ2 = {z∈C : ρ1 < |z|<ρ2} for the annulus
of parameters 0< ρ1 < ρ2.

Let α be a meromorphic differential on a small disk ∆ρ ⊂ C. We denote by
r the residue of α at 0. Then, there exists a conformal map ϕ : ∆ρ′ → ∆ρ for ρ′
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small enough, such that: ϕ(0) = 0 and

ϕ∗(α) =


d(zk) if 0 is a zero of order k − 1;
r dz

z if 0 is a pole of order 1;
d( 1

zk ) + r dz
z if 0 is a pole of order k + 1.

The map ϕ is unique up to multiplication of the coordinate z by a k-th root of unity
when 0 is a zero of order k − 1 or a pole of order k + 1. The coordinate z will be
called the standard coordinate.

More generally, if U is an open neighborhood of 0 in Cn and αu is a holomor-
phic family of differentials on ∆ρ such that the order of αu at 0 is constant, then
there exists an holomorphic map ϕ : Ũ×∆ρ′ →∆ρ such that ϕ(u, ·)∗(αu) is in the
standard form for some neighborhood of 0, Ũ . Once again the map ϕ is unique up
to multiplication of the standard coordinate by a root of unity.

Now the following classical lemma describes the deformations of d(zk) (see [55]
for a proof):

Lemma 2.2.29. Let ρ > 0 and U ⊂ Cn be a domain containing 0. Let αu be a
family of holomorphic differentials on ∆ρ such that α0 has a zero of order k − 1
at the origin. Then, there exists ρ′ > 0, a neighborhood of 0 in Ck−2, Z and a
conformal map

ϕ : U×∆ρ′ →∆ρ×Z
such that that ϕ(u, ·)∗(αu) = d(zk + ak−2zk−2 . . . + a1z). The map ϕ is unique up to
multiplication of z by a k-th root of unity.

The locus z = 0 determines a section of the projection U ×∆ρ that does not
depend on the choice of k-th root of unity. This section is called the local center of
mass of zeros.

Now we would like to generalize the above lemma to deformations of poles of
order 1.

Definition 2.2.30. Let ρ > 0 and U ⊂ Cn be a domain containing 0. Let α be a
differential on ∆ρ in the standard form d(zk). A standard deformation of α is de-
fined by a holomorphic function β : U×∆ρ→C satisfying β(0,z) = 0. A standard
deformation associated to β is the family of differentials on ∆ρ parametrized by U

αu = d(zk) +
β(u,z)

z
dz.

In general, there exists no standard coordinate for a standard deformation.
However, the following proposition has been proved in [3] (see Theorem 4.3).

Proposition 2.2.31. We consider the annulus Aρ1,ρ2 for any choice of 0 < ρ1 <
ρ2 < ρ.

Chose a point p ∈ Aρ1,ρ2 and ζ` = exp( 2iπ`
k ) a k-th root of unity. Chose a map

σ : U → ∆ρ such that σ(0) = ζ`p. Then there exists a neighborhood Ũ of 0 in U
and a holomorphic map ϕ : Ũ×Aρ1,ρ2 →∆R such that

ϕ∗u(αu) = d(zk) +
β(u,0)

z
dz,
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and ϕ(0,z) = ζ`z and ϕ(u, p) = σ(u) for all u ∈ Ũ and z ∈ Aρ1,ρ2 . For Ũ small
enough, the map ϕ is unique.

Let g,n and m be positive integers such that 2g−2+n+m> 0. Let P be a vector
of m positive integers and let R ⊂R be a vector subspace. We have described the
local parametrization of families of differentials, we will use it to describe how to
parametrize the strata AR

g,Z,P and their neighborhood in PHg,n,P.

Lemma 2.2.32. There exists a neighborhood V of Ag,Z,P inHg,n,P and a holomor-
phic retraction η : V → Ag,Z,P such that η preserves the residues at the poles.

PROOF. We suppose in first place that Z is complete for g and P. Let y0 =
(C,x1, . . . ,xn+m,α) be a point in Ag,Z,P. Let U ↪→ Ag,Z,P be an open orbifold chart
containing y0 and let W ↪→ Hg,n,P be an open orbifold chart containing U . We
consider the following relative homology group

H = H1(C \{xn+1, . . . ,xn+m},{x1, . . . ,xn};Z).

Let γ1, . . . ,γm ∈ H be the simple loops around the marked points correspond-
ing to poles. These cycles are independent and can be completed into a basis
(γ1, . . . ,γ2g−2+n+m) of H. We fix such choice of basis. Up to a choice of smaller U
and W , we will construct the following map

Φ : W → (H∨⊗C)×
n∏

i=1

Zi,

where Zi is an open neighborhood of 0 in Cki .
We denote by CW →W the universal curve. To construct the map Φ1

W : W →
H∨⊗C we chose a C∞-trivialization (given by Ehresmann’s Theorem) CW

∼→W×
C. This trivialization allows one to identify H1(Cs\{xn+1, . . . ,xn+m},{x1, . . . ,xn};Z)
with H for all points s of W . Thus we define

Φ1
W : W → H∨⊗C

(Cs,x1, . . . ,xn+m,αs) 7→ (γ 7→
∫
γ
αs).

The restriction of the map Φ1
W to U is a local isomorphism (see [55]).

Now the map Φ2
W : W →

∏n
i=1Zi is defined by a modification of Lemma 2.2.29

for marked differentials. For all 1 ≤ i ≤ n, we consider a tubular neighborhood
W ×∆ρ→CW around the i-th section of the universal curve. There exists a ρ′ > 0
and a neighborhood Zi of 0 ∈ Cki with coordinates (ai,1, . . . ,ai,ki) and a map ϕ :
W ×∆ρ→∆ρ′×Zi such that the marked point is at zi = 0 and

αs = d(zki+1
i + ai,kiz

ki
i + . . .+ ai,1zi)

for each point s of W . The map ϕ is unique up to a multiplication of zi by a
(ki + 1)-st root of unity. Thus we have defined a map from W to Zi given by αs 7→
(ai,1, . . . ,ai,ki)). The map ΦW is a local isomorphism (see [55]).

The map Φ1
W restricted to U being a local isomorphism, we can define locally

the map ηW : W →U as the composition (Φ1
W |U )−1 ◦Φ1

W . This map obviously pre-
serves the residues at the nodes. Besides, this map is independant of the choices of
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(ki + 1)-st roots defining the maps W →Zi for all 1≤ i≤ n and of the trivialization
of the universal curve.

Therefore we define globally the neigborhood V of Ag,Z,P and the retraction η
as the union of neigborhoods W defined as above. The retraction η : V → Ag,Z,P is
defined by gluing the ηW (the local retractions ηW being compatible as explained
above).

We no longer suppose that the vector Z is complete. Let y0 = (C,x1, . . . ,xn+m,α)
be a point of Ag,Z,P and let (k̃1, . . . , k̃n′) be the orders of zeros of α outside the
marked points. Let U and W be defined as in the complete case. We denote by
(x̃i)1≤i≤n′ be the non-marked zeros of α. We consider the relative homology group
H = H1(C \{xn+1, . . . ,xn+m},{x1, . . . ,xn, x̃1, . . . , x̃n′};Z). Then there exists a map

ΦW : W → (H∨⊗C)×

(
n∏

i=1

Zi

)
×

(
n′∏

i=1

Z̃i

)
where Z̃i is a neighborhood of 0 in Ck̃i−1 for all 1 ≤ i ≤ n′. The maps from W
to Zi are defined as in the complete case. For all 1 ≤ i ≤ n′, the map W → Z̃i is
determined by Lemma 2.2.29.

To define the map W → H∨⊗C we use once again Lemma 2.2.29. For all
1≤ i≤ n′ we have a section σ̃i : W →CW given by the local center of mass of zeros.
Thus, up to a choice of smaller W , for all s in W , Ehresmann’s Theorem allows us to
identify H1(Cs \ {xn, . . . ,xn+m},{x1, . . . ,xn, σ̃1(s), . . . , σ̃n′(s)};Z) with H. The map
W → H∨⊗C maps (Cs,x1, . . . ,xn+m,αs) to (γ 7→

∫
γ αs). The map ΦW is a local

isomorphism (see [55]).
We denote by Φ1

W the composition of ΦW with the projection onto (H∨⊗C)×∏n′
i=1 Z̃i. Then the restriction of Φ1

W to U is a local isomorphism by [55]. The
retraction ηW : W → U is defined as (Φ1

W |U )−1 ◦Φ1
W . It does not depends on the

choice of base of the H nor on the choice of roots of unity defining the maps from
W to the Zi and Z̃i. Thus this determines a global retraction of a neighborhood of
Ag,Z,P inHg,n,P that preserves the residues at the poles. �

Corollary 2.2.33. The residue map restricted to Ag,Z,P is a submersion. More
generally, if R ⊂ R is any vector subspace, the residue map AR

g,Z,P → R is a sub-
mersion.

PROOF. Let (C,x1, . . . ,xn+m,α) be a point of Ag,Z,P. Let r = (r1, . . . ,rm) be a
vector in R. There exists a meromorphic differential ϕ on C with at most simple
poles at the m last marked points with residues prescribed by r. Let ∆ be a disk of C
centered at 0 and parametrized by ε. Let η be the retraction map of Lemma 2.2.32.
The residues of η(α+ εϕ) at the poles are given by

resxn+i(α) + εri.

Thus the vector r belongs to the image of the tangent space of Ag,Z,P under the dif-
ferential of the map res. The same result stands if we restrict the tangent direction
to a vector subspace R. �

Remark 2.2.34. Recenlty Gendron and Tahar studied the surjectivity of the residue
maps for open strata in the space of meromorphic differentials (and also of higher
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order differentials – see [70]). Our statement that the residue map is a submersion
does not imply surjectivity. However, the image of an algebraic submersion is al-
ways a Zarisky open set. Thus we can claim that the residue map is surjective on
the closure of every nonempty stratum.

Now let g,n,n′,m ≥ 0 such that 2g − 2 + n + n′ + m ≥ 0. Let P = (p1, . . . , pm)
be a vector of positive integer. Let Z = (k1, . . . ,kn,kn+1, . . . ,kn+n′) be a vector of
nonnegative integers of length n + n′. We denote by P′ = (p1, . . . , pm,1, . . . ,1) the
vector obtained from p by adding n′ times 1 and by Z′ = (k1, . . . ,kn) the vector
obtained by erasing the last n′ entries of Z. The space Hg,n+n′,P is naturally a
closed subspace of Hg,n,P′ . We denote by R and R′ the vector spaces of residues
of Hg,n+n′,P and Hg,n,P′ . Let R′ be a vector subspace of R′. The vector space R is
a vector subspace of R′, we will denote by R =R∩R′. Now we have the natural
closed inclusions

AR
g,Z,P ⊂ AR

g,Z′,P ⊂ AR′
g,Z′,P′ .

Proposition 2.2.35. Let y0 be a point in AR
g,Z,P. Let U be neighborhood of y0 in

AR
g,Z,P. There exists a neighborhood V of y0 in AR′

g,Z′,P′ and a map

φ : V ∼→U×

(
n′∏

i=1

Zi

)
×Z

where:

• Zi is a neighborhood of 0 in Ckn+i for all 1≤ i≤ n′ and Z is a neighbor-
hood of 0 in R′/R;
• if ∆ρ is a disk and s : U ×∆ρ→ (

∏
Zi)×Z is a holomorphic map such

that s(u,0) = 0 then the family of differentials

s̃ : U×∆ρ → V

(u, ε) 7→ φ−1(u,s(u, ε))

is a standard deformation of d(zkn+i+1) for all 1≤ i≤ n′.

PROOF. We have seen that a neighborhood of U in AR
g,Z′,P is isomorphic to

U ×
∏n+n′

i=1 Zi. For all 1 ≤ i ≤ n′, the differential at the marked point xn+i is given
by d(zkn+i + a1zkn+i + . . .) (Lemma 2.2.29).

Now, we chose a set of meromorphic differentials ϕi with simple poles at the
marked points such that the vectors of residues ri of ϕi form a basis of R′/R. The
residue map AR′

g,Z′,P′→ R′ is a submersion (Corollary 2.2.33). Thus a neighborhood
of U×

∏
Zi in AR′

g,Z′,P′ is naturally identified with a U× (
∏
Zi)×Z with Z neigh-

borhood of 0 in R′/R, the identification being given by adding a linear combination
of the ϕi’s.

Both the deformations of U into U ×
∏
Zi and the deformations of U ×

∏
Zi

into U× (
∏
Zi)×Z are standard deformations at the marked point xn+i for 1≤ i≤

n′. �

The isomorphism φ is not unique. It depends of the choice of a standard coor-
dinates at the xn+i for 1≤ i≤ n′ and of the choice of the differentials ϕi with simple
poles.



44 2. COHOMOLOGY CLASSES OF STRATA OF DIFFERENTIALS

Proposition 2.2.36. Given such a choice of φ, Proposition 2.2.35 defines a local
retraction η : V →U such that η◦ s̃ = IdU for any holomorphic section s : U×∆ρ→
(
∏
Zi)×Z .

2.2.6. Dimension of the strata. Let g,n,m be positive integer such that 2g −

2+n+m> 0, P a vector of m positive integers, and R a vector subspace ofR. Let Z
be a vector of n nonnegative integers. If the context is clear, we will denote by the
same letter the map p :Hg,n,P→Mg,n and its restriction to p : AR

g,Z,P →Mg,n+m.
We denote by Im(p) the image of AR

g,Z,P by p inMg,n+m.

Lemma 2.2.37. If the vector Z is complete for g and P, then the map p : AR
g,Z,P→

Im(p) is a line bundle minus the zero section. In particular PAR
g,Z,P is isomorphic

to its image.

PROOF. Let (C,x1, . . . ,xn+m) be a point of Im(p). The curve C is smooth and
the divisor ωC −

∑n
i=1 ki(xi)+

∑m
j=1 p j(xn+ j) is a principal divisor of degree 0. There-

fore the fiber of p over (C,x1, . . . ,xn+m) is given by the nonzero multiples of one
differential with fixed orders of zeros and poles. �

Definition 2.2.38. Let Z = (k1, . . . ,kn) be a vector of nonnegative integer which is
not necessarily complete for g and P. A completion of Z is a vector Z′ = (k′1, . . . ,k

′
n′)

such that n′ ≥ n and for all 1≤ i≤ n we have k′i ≥ ki. We will say that the comple-
tion Z′ is exterior if for all 1≤ i≤ n we have k′i = ki. Finally we will denote by Zm

the maximal completion, i.e. the exterior completion of Z that satisfies k′i = 1 for all
n + 1≤ i≤ n′.

Lemma 2.2.39. We have

AR
g,Z,P =

⋃
Z′
π(AR

g,Z′,P),

where the union is over all exterior completions of Z and π is the forgetful map of
the zeros that are not accounted for by Z.

PROOF. Let (C,x1, . . . ,xn+m,α) be a point of AR
g,Z,P. The differential α has

zeros exactly of order ki at the first n marked points, thus the point lies in the image
of AR

g,Z′,P for an exterior completion. �

Proposition 2.2.40. Let Z be a vector of nonnegative integers and R a vector
subspace ofR. The locus AR

g,Z,P is empty or of codimension exactly |Z|+dim(R/R)
inHg,n,P.

PROOF. First we assume that Z is complete. The dimension of PAg,Z,P is equal
to the dimension of its image in the moduli space of curves. We suppose that R =R
(no residue condition). Then the image of PAg,Z,P is of dimension 2g − 2 + n if P
is empty (see [67]) and 2g − 3 + n + m otherwise (see [28]). By a simple count of
dimension we can check that the proposition is valid in this specific case.

We still assume that Z is complete, however we no longer assume that R =
R. We have seen that the residue map AR

g,Z,P → R is a submersion, therefore the
dimension of AR

g,Z,P is equal to the dimension of R plus the dimension of the fiber
of the residue map at any point. If we choose R =R, we get that the fiber at any
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point is given by dimAg,Z,P − dimR. Therefore the dimension of AR
g,Z,P is equal to

dimAg,Z,P − (m − 1) + dim(R). Thus the proposition is valid for all choices of R.
Now, let Z be any vector. Let Z′ = (k1, . . . ,kn, k̃n+1, . . . , k̃n′) be an exterior com-

pletion of Z. The map π : AR
g,Z′,P→ AR

g,Z,P is quasi-finite. Indeed the preimage of a
point (C,x1, . . . ,xn+m,α) is finite of cardinality

#Aut(k̃n+1, . . . , k̃n′),

(here #Aut(a1, . . . ,an) stands for the set of permutations σ of [1,n] such that ai =
aσ(i)). Indeed, the points in the preimage correspond to the different orderings of
the zeros that are not accounted for by Z. The proof of Lemma 2.2.32 implies that if
Ag,Z′,P is not empty for some exterior completion then Ag,Zm,P is not empty: indeed
we can always perturbate a differential to “break up” a zero of order greater than 1.
By counting the dimensions, we have dim(AR

g,Zm,P) > dim(AR
g,Z′,P) for all exterior

completions Z′ 6= Zm. Therefore dim(AR
g,Zm,P) = dim(AR

g,Z,P) and the proposition is
proved. �

Proposition 2.2.41. Let Z be a vector of nonnegative integers. The following
statements are equivalent:

(1) there exists a dense open set U ⊂ Im(p) such that the fiber of p over any
point of U is of dimension 1;

(2) the dimension of PAR
g,Z,P is less than or equal to the dimension ofMg,n+m.

PROOF. First, we assume that the dimension of PAR
g,Z,P is less than or equal to

the dimension ofMg,n+m. Let Zm be the maximal completion of Z. We have seen
that the image of AR

g,Zm,P is dense in Ag,Z,P. Therefore the image of Im(pm) is dense
in Im(p):

AR
g,Zm,P

//

pm

��

AR
g,Z,P

p

��
Im(pm) // Im(p).

In order to prove that the fiber of p over a generic point of Im(p) is of dimen-
sion 1, we only need to prove that dim(Im(p)) = dim(PAR

g,Z,P). We obviously have
dim(PAR

g,Z,P)≥ dim(Im(p)). Now we will prove that dim(PAR
g,Z,P)≤ dim(Im(p)).

We consider the two following two vector bundles over the moduli space of
curvesMg,n+m

KMg,n(P) = R0π∗(ωC(
m∑

i=1

piσn+i)),

E = R/R⊕

(
n⊕

i=1

Jhol
i,ki

)
,

where Ji,ki is the vector space of holomorphic jets of order ki at the marked point
xi, i.e.

Jhol
i,ki

= R0π∗(ω(−kixi)/ω).
(beware the vector space of jets here is not the vector space of polar jets used
in Section 2.2.2). We have a well defined map e : KMg,n(P)→ E. The rank of
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KMg,n(P) is r1 = g − 1 +
∑

pi if P is not empty and r1 = g otherwise. The rank of
E is r2 = dim(R/R) +

∑
ki. By assumption, we have

dim(PAR
g,Z,P) = dim(Mg,n+m) + r1 − r2 − 1< dim(Mg,n+m).

Let E ⊂Mg,n+m be the locus where e is not injective. We have r1 < r2, thus the
locus E is of codimension at least r2 − r1 + 1 because it is the vanishing locus of
r2 − r1 + 1 minors of the map e. Therefore the locus E is of dimension greater than
or equal to dim(PAR

g,Z,P).
Now we need to prove that Im(p) is open and dense in E . Let P′ be a vector of

m positive integers such that P′ ≤ P. Let Z′ be a vector of n nonnegative integers
such that Z′ ≥ Z. The image of PAR

g,Z′,P′ lies is in E . Conversely, the locus E is the
union of all the Im(p′) where p′ is the map from PAR

g,Z′,P′ to Mg,n+m for P′ ≤ P
and Z′ ≥ Z. We have dim(PAR

g,Z′,P′) < dim(PAR
g,Z,P)≤ dim(E) if P′ < P or Z′ > Z.

Therefore Im(p) is open and dense in the locus E and dim(Im(p)) = dim(PAR
g,Z,P).

Now to prove the converse implication we assume that the dimension of PAR
g,Z,P

is greater than than the dimension of Mg,n+m. We denote by d = dim(PAR
g,Z,P) −

dim(Mg,n+m). We consider the vector Zd which is obtained from Z by adding
d times 1. We denote pd : PAR

g,Zd ,P →Mg,n+m+d the forgetful map. We have
dim(PAR

g,Zd ,P) = dim(Mg,n+m+d) thus the map pd is quasi-finite over a dense open
set of Mg,n+m+d . Therefore on a dense open subset of Mg,n+m the fiber of p
contains at least one contracted curve obtained by forgetting the last d marked
points. �

2.2.7. Stable differentials on disconnected curves. In order to prove the
main theorem, we will need a generalization of the notion of stable differentials
to the case of disconnected curves. Let q be a positive integer, and

g = (g1,g2, . . . ,gq),

n = (n1,n2, . . . ,nq),

m = (m1,m2, . . . ,mq)

be lists of nonnegative integers satisfying 2g j − 2 + m j + n j > 0. Let

P = (Pj)≤ j≤q = (p j,i)≤ j≤q,1≤i≤m j

be a list of vectors of positive integers of length m j.

Definition 2.2.42. The space of stable differentials of type P is

Hg,n,P =
q∏

i=1

Hgi,ni,Pi .

Proposition 2.2.43. The space of stable differentials of type P is a cone over

Mg,n,m
def
=
∏q

j=1Mg j,n j+m j . Its Segre class is given by

s
(
Hg,n,P

)
=

q∏
j=1

s
(
Hg j,n j+m j,Pj

)
,
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where s
(
Hg j,n j,Pj

)
is the pull-back of the Segre class of Hg j,n j,Pj to the product∏q

j=1Mg j,n j+m j under the jth projection.

PROOF. The proof is straightforward because the space Hg,n,P is a product of
cones. �

To handle the residues, we extend the definition of the space of residuesR:

R =
q⊕

j=1

R j = {(r j,i) j,i such that
m j∑
i=1

r j,i = 0,∀ j ∈ [1,q]} ⊂ Cm1+...+mq .

Definition 2.2.44. Let R be a vector subspace ofR. The spaceHR
g,n,P is the space

of stable differentials with residues lying in R.

Remark 2.2.45. The linear relations that define the space R can involve residues
at poles of different connected components.

Notation 2.2.46. Let 1 ≤ j ≤ q. We will denote by pr j :R→R j the projection
onto R j along

⊕
j′ 6= jR j′ . We will denote by R j the space pr j(R). The previous

remark implies that in general R∩R j ( R j.

Notation 2.2.47. Let Z = (Z j) j=1...q = ((k1,1, . . . ,k1,n1), . . . , (kq,1, . . . ,kq,nq)) be a list
of vectors of nonnegative integers of length n j. We define

AR
g,Z,P ⊂H

R
g,n,P

as the locus of points(C, (x j,i)1≤ j≤q,1≤i≤n j+m j ,α) ∈ HR
g,n,P such that C is smooth

and α which is nonzero on each connected component and with zeros of orders
exactly k j,i at the n j first marked points of each connected component. If there is
no condition on the residues we will simply denote it by Ag,Z,P. We will call Z
complete if all the Z j are complete.

Lemma 2.2.48. Let R be a linear subspace of R. The space HR
g,n,P is a subcone

ofHR
g,n,P of codimension dim(R) − dim(R) and we have:

• the conesHg,n,P andHR
g,n,P have the same Segre class;

• the Poincaré-dual class of [PHR
g,n,P] in H∗(PHg,n,P,Q) is given by

ξdim(R)−dim(R);

• let Z be a list of vectors which is complete for g and P, then the map
p : AR

g,Z,P→ R is a submersion;
• let Z be a list of vectors of nonnegative integer. The locus AR

g,Z,P is empty
or of codimension

∑
k∈Z k + dim(R) − dim(R) inHg,n,P.

PROOF. All proofs of Section 2.2.4 and 2.2.6 can be adapted immediately to
the disconnected case. �

2.2.8. Fibers of the map p : AR
g,Z,P→Mg,Z,P. Let q≥ 1. Let g,n,m,Z, and

P be lists of integers and vectors of integers of length q as in the previous section.
LetR be the vector space of residues and R⊂R a vector subspace.



48 2. COHOMOLOGY CLASSES OF STRATA OF DIFFERENTIALS

If the context is clear, we will denote by the same letter the map p :Hg,n,P→
Mg,n,m and its restriction p : AR

g,Z,P → p(AR
g,Z,P). We will denote by Im(p) =

p(AR
g,Z,P) ⊂ Mg,Z,P its image. In this section we will state some conditions to

determine if the fiber of pover a general point of Im(p) is of dimension 1 or not.
This will be important to describe the boundary divisors of the the stratum AR

g,Z,P.

Let 1 ≤ j ≤ q. We denote by p j the map from AR j
g j,Z j,Pj

toMg j,n j+m j . Finally
we denote by Im(p j) the image of p j. We have a natural inclusion of AR

g,Z,P into∏q
j=1 AR j

g j,Z j,Pj
and of Im(p) into

∏n
i=1 Im(p j).

Assume that Z is complete. We recall that AR j
g j,Z j,Pj

→ Im(p j) is a line bundle
minus the zero section. We will denote by L j the pull-back of this line bundle to
Im(p).

We recall that R j is the space of residues at the jth component and that we
have R =

⊕q
i=1R j. We define the j-th evaluation map of residues ev j : L j →

R j as the morphism of vector bundles over Im(p) given by the evaluation of the
residues at the i-th connected component. We define the evaluation of residues as
the morphism of vector bundles: ev = (

⊕q
j=1 evi) :

⊕q
j=1 L j→R.

Remark 2.2.49. The evaluation map (ev) and the residue map (res) are not de-
fined on the same spaces. The first one is a morphism of vector bundles on the
space Im(p) while the second one is defined as a morphism of vector bundles over
PAR

g,Z,P. If q = 1, then PAR
g,Z,P is isomorphic to its image and the two maps corre-

spond.

Proposition 2.2.50. Suppose that Z is complete. Then the families

p : AR
g,Z,P→ Im(p)

and

p̃ : ev−1(R)∩

 q∏
j=1

L∗j

→ Im(p)

are isomorphic. If q≥ 2, the fiber of p over a point is of dimension 1 if and only if
ev is injective and R∩ ev(

⊕
j L j) is of dimension 1.

PROOF. For a point x ∈ Im(p), the fiber of p can be described as follows: it
is the choice of a nonzero differential for each connected component such that the
residues at the poles define a vector in R. Therefore the fiber over x is the subset of
points of

∏
L∗j with residues in R. This fiber is given by ev−1(R)∩

∏q
j=1 L∗i .

The fiber of ev−1(R)∩
∏q

j=1 L∗j over x ∈ Im(p) is not empty. Indeed, suppose
that for some 1 ≤ j ≤ q the space ev−1(R) is contained in {0}

⊕
j′ 6= j L j′ , then the

residue condition R imposes that the differential on one of the component is zero. In
which case, x is not a point of Im(p). Therefore the dimension of ev−1(R)∩

∏q
j=1 L∗j

is the same as the dimension of ev−1(R)∩
⊕q

j=1 L j.
The only point that remains to prove is: if the map ev is not injective then

the fiber of p is of dimension greater than 1. We assume that the map ev is not
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injective, then one of the L j’s is mapped to zero for some 1≤ j≤ q. Thus we have:

ev−1(R)∩
q⊕

j=1

L j = L j⊕

ev−1(R)∩
⊕
j′ 6= j

L j′

 .
We have seen that ev−1(R) cannot be contained in L j×{0}, thus the second sum-
mands is of positive dimension and ev−1(R)∩

⊕q
j=1 L j is of dimension greater than

1. �

Let Σ be the union of the vector subspaces R∩ ker(pr j) for 1 ≤ i ≤ q. If R is
of positive dimension, we denote by PΣ the image of Σ in PR. This is the locus
of vectors of residues that vanish on at least one connected component. Suppose
that all R j are of positive dimension, then Σ ( R and there is a natural map ρ :
PR\PΣ→

∏q
j=1PR j defined as the projection on each factor.

Notation 2.2.51. We will say that the residue vector spaces (R,R, (R j)1≤i≤q)
satisfy the condition (?) if

• the space R and the R j’s are of positive dimension;
• the map ρ from PR\PΣ to

∏q
i=1PR j is finite over a dense open subset of

PR\PΣ.

Proposition 2.2.52. Suppose that Z is complete and that q is at least 2. Then the
fiber of p over a generic point of Im(p) is of dimension 1 if and only if the triple
(R,R, (R j)1≤ j≤q) satisfies the condition (?).

PROOF. We have already seen that if R j is reduced to the trivial space, then
the map ev :

⋃q
j=1 L j →R is not injective and the fibers of p are all of dimension

greater than 1 (see the proof of Proposition 2.2.50). We assume that all R j are non
trivial. For all j, we denote by A0

j ⊂ AR
g,Z,P to be the locus of differentials with

zero residues on the jth component. The image of A0
j by the residue map lies in

R∩ ker(pr j) which is of positive codimension in R. Besides the residue map is a
submersion, thus dim(A0

j)< dim(AR
g,Z,P). We will denote

A′ = AR
g,Z,P \

q⋃
j=1

A0
j .

The locus A′ is dense in AR
g,Z,P. If we assume that the fibers of p are generically of

dimension 1, then p(A′) is also dense in Im(p). Therefore we only need to prove
that a generic point of p(A′) has fibers of dimension 1 if and only if condition (?)
is satisfied.

It is easy to check that the residue map sends A′ to R\Σ. Therefore the locus
p(A′) is the locus of points such that the map ev defined in the proof of Proposi-
tion 2.2.50 is injective. Thus a point of p(A′) has fibers of dimension 1 by p if and
only if R∩ ev(

⊕
j L j) is of dimension 1. Now, R∩ ev(

⊕
j L j) is of dimension 1 if

and only if the preimage under ρ of the point (L1, . . . ,Lq) ∈
∏q

j=1PR j is composed
of a unique point.
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Now the residue map is a submersion from AR
g,Z,P to R. Therefore, the map ρ is

finite on a dense open subset of PR\PΣ if and only if the fiber of p is of dimension
1 on a dense open set of Im(p). �

Now no longer assume that Z is complete for g and P.

Notation 2.2.53. We will say that (g,Z,P,R) satisfies condition (??) if and only if
either q = 1 or the following two following conditions are satisfied

• the vector spaces (R,R, (R j)1≤ j≤q) satisfy the condition (?);
• for all 1≤ j ≤ q, we have dim(AR j

g j,Z j,Pj
) − 1≤ dim(Mg j,n j+m j ).

Proposition 2.2.54. The fiber of p over a generic point of Im(p) is of dimension 1
if and only if (g,Z,P,R) satisfies condition (??).

PROOF. Let Zm be the maximal completion of Z. We denote by Z j,m the max-
imal completion of Z j. We recall that

dim(AR
g,Zm,P) = dim(AR

g,Z,P).

If (R,R, (R j)1≤ j≤q) does not satisfy the condition (?), then the dimension of AR
g,Zm,P

is greater than the dimension of its image in the moduli space of curves and the
general fiber of p is of dimension greater than 1. From now on, we assume that
(R,R, (R j)1≤ j≤q) satisfies the condition (?).

First, we suppose that dim(AR j
g j,Z j,Pj

) − 1> dim(Mg j,n j+m j ) for some j ∈ [[1,q]].
The preimage of a point in Im(p j) under p j has fibers of dimension greater than

1. Let y be a point in AR
g,Z,P. The point y determines point y j′ in A

R j′
g j′ ,Z j′ ,Pj′

for

j′ 6= j and a point y j in AR j
g j,Z j,Pj

. We denote by E j the locus of points in y′j ∈
p−1

j ({p j(y j)}) such that the residues of y′j and y j are equal. By hypothesis, the
locus E j is of dimension at least 1. Now the preimage of p(y) under p contains the
points (y1, . . . ,y′j, . . . ,yq) for all y′j ∈ E j. Therefore the dimension of the fiber of
p(y) under p is greater than 1.

Now, we assume that dim(AR j
g j,Z j,Pj

) − 1 ≤ dim(Mg j,n j+m j ) for all 1 ≤ j ≤ q.
We already know that dim(Im(p)) ≤ dim(AR

g,Z,P). To prove that dim(Im(p)) ≥
dim(AR

g,Z,P), we study the two vector bundles overMg,n,m defined has:

E1 =
q⊕

j=1

KMg j,n j (Pj) =
q⊕

j=1

R0π∗(ω j(
m j∑
i=1

pixn j+i)),

E2 = R/R⊕

 q⊕
j=1

nq⊕
i=1

Jhol
j,i,ki

 ,
where the notation ω j stands for the dualizing sheaf of the j − th component of
the universal curve and J j,i,ki is the space of jets of holomorphic jets order ki at
the ith marked point of the jth component (see the proof of Proposition 2.2.41 for
definition). There is a natural morphism of vector bundles e : E1→ E2. As in the
proof of Proposition 2.2.41, Im(p) is dense in the locus where e is not injective and
we conclude that dim(AR j

g j,Z j,Pj
) − 1 = dim(Mg j,n j+m j ). �
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2.2.9. Unstable base. Here we extend the definition of the spaces of stable
differentials to the case of an unstable base. Two kinds of spaces Hg,n,P with un-
stable base appear as degenerations of the spaces with stable base:

• The genus g is equal to 0, n = m = 1 and P = (p) with p > 1 (stability
condition).
• The genus g is equal to 0, n = 0, m = 2 and P = (1, p) with p> 1 (stability

condition).
These two spaces do not come with a natural structure of cones because the moduli
space M0,2 is empty. However we can still define these moduli spaces and the
C∗-action.

The space H0,1+1,(p) is defined as complementary of {u = 0} in the space of
generalized principal parts defined in Section2.2.1. In other words H0,1+1,(p) is the
spectrum of the graded subalgebra of C[a1, . . . ,ap−2] generated by monomials with
integral weights (where the weight of a j is j/(p − 1)).

Similarly the space H0,2,(1,p) is the spectrum of the graded subalgebra of the
algebra C[a1, . . . ,ap−2,r] generated by monomials with integral weights where r
(for residue) has weight 1.

Definition 2.2.55. A triple (g,n,P) composed of a nonnegative integers g and n
and a vector P of positive integers is semi-stable if 2g − 2 + n + `(P) > 0 or g = 0,
n = 1 and P = (p) with p> 1 or g = 0, n = 0, P = (1, p) with p> 1.

If Z is vector of nonnegative integers, then the triple (g,Z,P) is semi-stable if
(g, `(Z),P) is semi-stable.

Consider two lists g and n of q nonnegative integers and a list P of q vectors.
The triple (g,n,P) is semi-stable if all (g j,n j,Pj) are semi-stable. If Z is a list of
vectors then (g,Z,P) is semi-stable if all (g j,Z j,Pj) are semi-stable.

Definition 2.2.56. Let g,n,m,P be lists of genera, numbers of marked points
without poles, numbers of marked poles and vectors of positive integers indexed
by j ∈ [[1,q]]. We suppose that (g,n,P) is a semi-stable triplet. We defineHg,n,P =∏q

j=1Hg j,n j,Pj . If at least one of the j ∈ [[1,q]] satisfies 2g j − 2 + n j + m j > 0, then
Hg,n,P is a cone over the following base

Mred
g,n,m =

∏
j:2g j−2+n j+m j>0

Mg j,n j+m j .

We will call this space, the reduced base.

Now we can extend the definition of the previous sections to semi-stable triples.

Notation 2.2.57. Let Z be a list of vectors such that the triple (g,Z,P) is semi-
simple. Let R⊂R a vector subspace. We still denote by AR

g,Z,P ⊂Hg,n,P the locus
of differentials with residues lying in R and zeros of order prescribed by Z (see
Notation 2.2.47).

We also define the tautological ring.

Definition 2.2.58. Let p : Hg,n,P →M
red
g,n,m be the projection to the base. The

tautological ring RH∗(PHg,n,P) is the ring generated by ξ = c1(O(1)) and pull-
backs by p of tautological classes from the baseMred

g,n,m.
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We generalize Theorem 2.1.14.

Theorem 2.2.59. For all g,Z,P (list of integers and vectors of integers) and R a
subspace ofR, the Poincaré-dual class of PAR

g,Z,P in H∗
(
PHg,Z,P,Q

)
is tautologi-

cal and can be explicitly computed.

2.2.10. Semi-stable graphs. Let g,n,m,P be lists of genera, numbers of marked
points without poles, numbers of marked poles and vectors of positive integers in-
dexed by j ∈ [[1,q]] as in the previous Section. The space Hg,n,P has a natural
stratification whose strata are described by semi-stable graphs that we define here.

Definition 2.2.60. A semi-stable graph of type (g,n,P) is given by the data

Γ = (V,H,g : V → N,a : H→V, i : H→ H,E),

satisfying the following properties:

• V is a vertex set with a genus function g.
• H is a half-edge set equipped with a vertex assignment a and an involu-

tion i;
• the edge set E is defined as the set of length 2 orbits of i in H (self-edges

at vertices are permitted);
• (V,E) has q connected components;
• for all 1 ≤ j ≤ q, the genus of the connected component labeled by j is

defined by
∑

g(v) + #(E j) − #(Vj) + 1 and is equal to g j;
• L is the set of fixed points of i called legs;
• for all 1≤ j ≤ q, there are n j + m j legs on the jth connected component;
• for each vertex v in V ,

– let n(v) be the number of legs of v corresponding to marked points
without poles;

– let m(v) be the number of legs of v corresponding to marked points
with poles plus the number of half-edges adjacent to v which corre-
spond to edges;

– let P(v) be the vector of orders of poles at marked points adjacent to
v, to which we add poles of order one for the half-edges;

• for each vertex v, the triple (g(v),n(v),P(v)) is semi-stable.

We define the following lists indexed by the vertices of Γ:

gΓ = (g(v))v∈V , nΓ = (n(v))v∈V ,

mΓ = (m(v))v∈V , PΓ = (P(v))v∈V .

The triple (gΓ,nΓ,PΓ) by definition of a semi-stable graph. We will consider the
space HgΓ,nΓ,PΓ . We denote by RΓ the space of residues of HgΓ,nΓ,PΓ . We define
RΓ ⊂ R as the vector subspace of residues satisfying that the sum of residues at
two half edges of an edge is zero.

Notation 2.2.61. Let Γ be a semi-stable graph we denote byHΓ the moduli space
HRΓ

gΓ,nΓ,PΓ
and by

ζ#
Γ :HΓ→Hg,n,P

the natural closed immersion.
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Thus boundary strata ofHg,n,P are described by semi-stable graphs.
The space PHΓ comes with a tautological line bundle. This line bundle is the

pullback by ζ#
Γ of the tautological line bundle of PHg,n,P. By abuse of notation we

will write ξ for the first Chern class of the dual of the tautological line bundle for
both spaces. We have the following important proposition.

Proposition 2.2.62. Let Γ be semi-stable graph. The morphism ζ#
Γ∗ : H∗(PHΓ,Q)→

H∗(PHg,n,P,Q) maps tautological classes to tautological classes.

PROOF. Let Γ be a semi-stable graph. Let k ≥ 0 and β ∈Mred
Γ . We need to

prove that the class ζ#
Γ∗(ξ

k p∗(β)) is tautological. We will prove this statement in
three steps.

Stable graphs. We suppose first that Γ is a stable graph. We recall that in this
case we have defined a map ζΓ :MΓ→Mg,n,m. ThenHΓ is the fiber product

HΓ

pΓ
��

ζ#
Γ // Hg,n,P

p
��

MΓ
ζΓ

//Mg,n,m

Let β be a cohomology class in H∗(MΓ,Q). We use the projection formula and
the fact thatHΓ is a fiber product to get ζ#

Γ∗(ξ
k · p∗Γ(β)) = ξk p∗(ζΓ∗(β)). Therefore,

if the class β belongs to the tautological ring RH∗(MΓ,Q), then the class ζ#
Γ∗(ξ

k ·
p∗Γ(β)) belongs to the tautological ring ofHg,n,P.

Graph with one main vertex. Now we no longer assume that Γ is stable. Let
1 ≤ j ≤ q and 1 ≤ i ≤ m j. Let pi be the ith entry of Pj. Assume that Γ is the
following graph

x j,n j+i

0

g j

(we take the trivial graph for all the other connected components). We will prove
that the class ζ#

Γ∗(1) lies in RH∗(PHg,n,m,P). We use the parametrization of the
cone of principal parts at x[(

u
z

)pi−1

+ a1

(
u
z

)pi−2

+ . . .+ api−2

(
u
z

)]
dz
z
.

The stratum defined by Γ is the vanishing locus of u. We have seen that upi−1 is a
section of the line bundle Hom(O(−1),Lpi−1

i ). Therefore the vanishing locus of u
has Poincaré-dual class given by

[u = 0] =
1

pi − 1
ξ −ψi.

By the same argument, if Γ is the graph
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x j,n j+i1 x j,n j+i2 . . .

0 0 . . .

g j

where the set {ik} is a set of indices in [[1,m j]]. Then we have

ζ#
Γ∗(1) =

∏
k

(
1

pik − 1
ξ −ψik

)
.

And more generally, for a class β in RH∗(Mred
g,n,m,P) and k ∈ N, we have

ζ#
Γ∗(ξ

kβ) = ξkβ ·
∏

k

(
1

pik − 1
ξ −ψik

)
∈ RH∗(Hg,n,m,P).

General unstable graph. We combine the two previous arguments. Let Γ be
a general semi-stable graph. Let Γ̂ be the graph obtained by contracting all edges
between stable vertices. We haveMred

g,n,m =Mred
Γ̂ The spaceHΓ is the fiber product

HΓ

pΓ
��

// Hred
Γ̂

p
Γ̂
��

ζ#
Γ̂ // Hg,n,m

MΓ
ζΓ

//Mred
g,n,m.

Thus ζ#
Γ∗(ξ

k p∗Γβ) = ζ#
Γ̂∗

(ξk p∗
Γ̂

(ζΓ∗β)). Now Γ̂ has one stable vertex, and ζΓ∗β ∈

RH∗(Mred
g,n,m) thus the class ζ#

Γ∗(ξ
k p∗Γβ) is tautological. �

2.3. The induction formula

The aim of this section is to prove Theorem 2.2.59 stating that the cohomology
classes [PAR

g,Z,P] ∈ H∗(PHg,n,P,Q) are tautological. For this purpose we will state
and prove the most technical and important result: the induction formula for the
classes [PAR

g,Z,P]. Before doing this, we need to understand the closure of AR
g,Z,P in

Hg,n,P. We will describe this closure using graphs with twists and level structures
following [3] and [28]. However our spaceHg,n,P is different from the spaces used
in [3] and [28] so that we have to modify their definitions. That is why we will
introduce P-admissible graphs.

2.3.1. Twisted graphs with level structures. Let g,n,m,P be lists of genera,
numbers of marked points without poles, numbers of marked poles and vectors
of positive integers indexed by j ∈ [[1,q]]. We suppose that the triplet (g,n,P) is
semi-stable. Let Z be a list of q vectors of nonnegative integers of lengths pre-
scribed by n. Let R be a vector subspace of the space of residuesR. We introduce
a stratification of AR

g,Z,P. Strata will be described by combinatorial objects called
P-admissible graphs. We introduce these graphs here and explain how they corre-
spond to strata of AR

g,Z,P in section 2.3.2.
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Let Γ be a semi-stable graph of type (g,n,m,P). We denote by He the set of
half-edges of Γ which are not legs.

Definition 2.3.1. A twist on Γ is a function

I : He→ Z

Satisfying the following conditions.

• If h and h′ form an edge, then I(h) + I(h′) = 0.
• Let v and v′ be two vertices, and {(h1,h′1), . . . , (hn,h′n)} be the set of

edges from v to v′. Then either I(h j) = 0 for all 1≤ j≤ n, or I(h j)> 0 for
all 1≤ j ≤ n, or I(h j)< 0 for all 1≤ j ≤ n. We say that v = v′, or v> v′,
or v< v′, depending on the above inequalities.
• The relation ≤ thus defined on vertices is transitive.

For shortness, a semi-stable graph endowed with a twist function will be called
a twisted graph. If (Γ, I) is a twisted graph, the above conditions define a partial
order on the set of its vertices of Γ.

Definition 2.3.2. A level structure on a twisted graph is a function:

l : Vertices→ Z−,

compatible with the partial order induced by the twist, i.e., for all vertices v and v′,

v = v′⇒ l(v) = l(v′), v< v′⇒ l(v)< l(v′).

We impose that the image of l is an interval containing all integers from 0 to −d and
we call d the depth of the twisted graph. We will denote by V i the set of vertices
of level i.

Definition 2.3.3. A twisted graph with level structure is called P-admissible if all
marked poles of order at least 2 belong to vertices of level 0. For shortness we will
call such graphs admissible graphs.

Example 2.3.4. We represent in Figure 1 an example of admissible graphs. Each
vertex v is represented by a circle containing the integer gv. The marked poles and
zeros are represented by legs. A leg corresponding to a pole (respectively a zero)
of order k is marked by −k (respectively +k). The twists are indicated on each edge.

Definition 2.3.5. An edge between vertices of the same level will be called an
horizontal edge.

2.3.2. Boundary strata associated to admissible graphs. Let g,n,m,P,Z
and R be as in the previous section. Let (Γ, I, l) be an admissible graph. In this
subsection, we assign to this admissible graph a stratum of abelian differentials
AΓ,I,l ⊂ Hg,n,P that lies in the closure of AR

g,Z,P. We build this stratum level by
level.

To every level 0 vertex we will assign a cycle in the corresponding space of
differentials. To every vertex of negative levels we will assign a cycle in the corre-
sponding moduli space of curves. The product of these cycles will give us a cycle
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−3 −2

Level 0 1
+1

−1 −2

+1

−1

0
+1

−1

+2
2

+1

−1

+4

Level -1 0
+1

−1

0
+2

−2

+3

−3

+2

Level -2 1 0

+7 +4

FIGURE 1. An example of admissible graph of genus 7 for the
vectors Z = (2,4,4,7) and P = (−3,−2).

in the space HΓ by putting an identically vanishing differential on every compo-
nent of the curve of negative level. Thus our input is (Z,R) and an admissible graph
(Γ, I, l) of type g,n,P; our output is a collection of cycles in the spaces of differ-
entials (for level 0 vertices) and in the spaces of curves (for vertices of negative
levels).

Level 0. Suppose there are q0 level 0 vertices. Their genera, half-edges and
twists determine lists g0,n0,m0,P0,Z0 of length q0 as in Section 2.2.7: half-edges
h to deeper levels are listed as zeros of orders I(h) − 1.

Now we define a space of residues. Residues are assigned to legs that corre-
spond to marked poles and to horizontal edges. These residues should satisfy three
conditions:

• the residues on the two half-edges of a horizontal edge are opposite;
• the sum of residues at each vertex vanishes;
• the vector of residues on the marked poles belongs to the space R.

These conditions define a vector space denoted by R0. With these data, we define
the level 0 stratum A0

Γ,I,l = AR0

g0,P0,Z0
.

Level -1. Suppose there are q1 level −1 vertices. Their genera, half-edges and
twists determine lists g1,n1,m1,P1,Z1 of length q1 as in Section 2.2.7: half-edges
to level 0 are listed as poles of order −I(h) + 1 and half-edges to deeper levels as
zeros of order I(h) − 1.

To define the space of residue R1 we need a little more notation than for the
level 0. We define a first space of residues R̃: residues are assigned to legs that
correspond to marked poles on components of level 0 or −1 and to half-edges of
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edges between components of level 0 or −1. The space R̃ is the direct sum of R0

and R1 corresponding respectively to residues assigned to half-edges of level 0
and -1. Let pr be the projection from R̃ toR1 alongR0. Let R̃1 ⊂ R̃ be the vector
subspace defined by the linear conditions:

• the residues on the two half-edges of a horizontal edge are opposite;
• the sum of residues at each vertex vanishes;
• the vector of residues on the marked poles on components of level 0 be-

longs to the space R.
The vector space R1 is defined as pr(R̃1).

Example 2.3.6. To illustrate the definition of R1, we compute all vector spaces for
the following two graphs

c1 c2

a1 •b1 a2 •b2 a1 •b1 a2 •b2

(a) a′1 •a′2 b′1 •b′2 (b) a′1 •a′2 b′1 •b′2.

On these two examples we have not represented the genera of the vertices and
we have only represented the legs with poles (thus at level 0). In the first case
R =R = {0} (there are no poles). In the second case we assume that R =R'C (we
impose no condition on the residues). All letters stand for the value of the residue,
i.e. for a coordinate in R̃ corresponding either to a half-edge or to a marked pole. In
the following table we give the dimensions and equations of all sub-vector spaces
of R̃ and a presentation of R̃1 and R1.

Vector space Example (a) Example (b)

R̃ C8 C10

R1 C4 {a1 = a2 = b1 C4 {a1 = a2 = b1 =
= b2 = 0} b2 = c1 = c2 = 0}

R0 C4{a′1 = a′2 = b′1 = b′2 = 0} C6{a′1 = a′2 = b′1 = b′2 = 0}
Relations from {a1 + a′1 = a2 + a′2 = {a1 + a′1,a2 + a′2,

edges b1 + b′1 = b2 + b′2 = 0} b1 + b′1 = b2 + b′2 = 0}
Relations from {a1 + b1 = b1 + b2 = {a1 + b1 + c1 = b1 + b2 + c2 =

vertices a′1 + a′2 = b′1 + b′2 = 0} a′1 + a′2 = b′1 + b′2 = 0}
Relations from R {0} {c1 + c2 = 0}

R̃1 {(a1 = ε,a′1 = −ε,a2 = −ε, {(a1 = ε1,a′1 = −ε1,a2 = −ε1,
a′2 = ε,b1 = −ε,b′1 = ε, a′2 = ε1,b1 = −ε2,b′1 = ε2,b2 = ε2,
b2 = ε,b′2 = −ε), ε ∈ C} b′2 = −ε2,c1 = −ε1 + ε2,

c2 = +ε1 − ε2), (ε1, ε2) ∈ C2}
R1 {(a′1 = −ε,a′2 = ε,b′1 = ε, {(a′1 = −ε1,a′2 = ε1,b′1 = ε2,

,b′2 = −ε), ε ∈ C} b′2 = −ε2), (ε1, ε2) ∈ C2}
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Now we define

A1
Γ,I,l = p(AR1

g1,Z1,P1
)⊂Mg1,n1,m1 =

∏
v∈V 1

Mgv,nv+mv ,

where p :Hg1,n1,P1 →Mg1,n1,m1 is the forgetful map.
Level −`. Let Γ′ be the graph obtained from Γ by contracting edges between

vertices of levels 0 through −` + 1. The twist on Γ restricts to Γ′ and the level
structure is shifted. Vertices of levels 0 to −`+ 1 merge to level 0, level −` vertices
become level -1 vertices and so on. Therefore we have the natural identification∏

v∈V (Γ),
`(v)=−`

Mg(v),n(v) =
∏

v∈V (Γ′),
`(v)=−1

Mg(v),n(v)

and we define A`Γ,I,l as A1
Γ′,I,l .

Example 2.3.7. The contraction of level 0 and −1 of the admissible graph of
Figure 1 gives the following admissible graph with two levels

−3 −2

2

−1

+1 +3

−3

2

+2

−2

+1

−1

+2

1 0

+7 +4

If we assume that we have R =R' C then here we have R0 = {0} while R0′ = R.

Notation 2.3.8. Now that we have defined the A`Γ,I,l for all levels, we denote

AΓ,I,l =
∏
`∈Z−

A`Γ,I,l.

We have a natural inclusion of AΓ,I,l ↪→Hg,n,P: the differential is nonzero only on
the level 0 vertices and vanishes identically everywhere else. We will call AΓ,I,l the
boundary stratum of type (g,Z,P,R) associated to (Γ, I, l).

Remark 2.3.9. Note that the stratum AΓ,I,l is constructed from an admissible
graph (Γ, I, l) of type (g,n,P), a space of residues R⊂R and q vectors of zeros Z.
However, for simplicity, R and Z do not explicitly appear in the notation.

Remark 2.3.10. If R = R, then the construction of the space of residues is the
translation of the global residue condition of [3]. For every level −` and every ver-
tex v of level greater than −` that does not contain a pole the following conditions
holds. Let h1, . . . ,hk denote the half-edges adjacent to v and part of an edge to a
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vertex of level −`. Then the sum of residues assigned to this set of half-edges is
zero.

Our definition of the Ri is more complicated to state because we need to take
into account any vector subspace R ofR.

2.3.3. Stratification of AR
g,Z,P. Let q,g,n,m,Z = (k j,i) 1≤ j≤q

1≤i≤n j

,P = (p j,i) 1≤ j≤q
1≤i≤m j

,

and R be as in the previous section.

Lemma 2.3.11. Let (Γ, I, l) be an admissible graph of type (g,Z,P,R). The locus
AΓ,I,l lies in the closure of AR

g,Z,P. Conversely if y is a point of AR
g,Z,P then there exists

an exterior completion Z′ of Z and an admissible graph (Γ, I, l) of type (g,Z′,P,R)
such that y lies in π(AΓ,I,l), where π : AR

g,Z′,P → AR
g,Z,P is the forgetful map of the

marked zeros that are not accounted for by Z.

Before proving it we will introduce the incidence variety compactification
of [3].

Notation 2.3.12. We suppose that 2g j − 2 + n j + m j > 0 for all 1≤ j ≤ q. Then we
denote by KMg,n(P) the vector bundle

R0π∗

ω
 q∑

j=1

m j∑
i=1

p j,iσ j,n j+i

 ,
where π : Cg,n,m→Mg,n,m is the forgetful map, ω is the relative dualizing sheaf and
the σ j,i’s are the sections of the universal curve (this generalize the notation 2.2.19
to the disconnected case).

As in Section 2.2, there exists a natural morphism of cones

stab :Hg,n,P→ KMg,n(P).

2.3.3.1. The image of AR
g,n,P under the morphism stab.

Definition 2.3.13. We denote by ΩMinc
g (Z,P)R ⊂ KMg,n(P) the image of AR

g,n,P
under the morphism stab. The incidence variety for the tuple (g,Z,P,R) is the
closure of ΩMinc

g (Z,P)R in KMg,n(P).

The morphism stab induces a map from AR
g,n,P to ΩMinc

g (Z,P)R. We will use
the same notation for the morphism stab and its restriction

stab : AR
g,n,P→ ΩMinc

g (Z,P)R.

Proposition 2.3.14. We suppose that Z is complete. The map stab : AR
g,n,P →

ΩMinc
g (Z,P)R is an isomorphism.

Remark 2.3.15. Beware that this statement is valid only under the hypothesis
that Z is complete. Otherwise the map stab may have fibers of positive dimension
and/or not be surjective.
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PROOF. In Section 2.2 we proved that the following square is cartesian

Hg,n,P
Φ j,i//

��

⊕
1≤ j≤q
1≤i≤m j

P j,n j+i

��
KMg,n(P)

proj j,i//
⊕

1≤ j≤q
1≤i≤m j

J j,n j+i,

where P j,n j+i is the cone of principal parts of order p j,i at the i-th marked point
of j-th connected component and J j,n j+i the bundle of polar jets of order p j,i. We
recall that we have defined the spaces

P̃n j+i = (Pn j+i \An j+i)∪ the zero section

J̃n j+i = ′Jn j+i \{leading term = 0})∪ the zero section.

We have seen that the map φi, j maps Pn j+i to J̃n j+i and that the restriction of φi, j

to P̃ j,n j+i→ J̃ j,n j+i is an isomorphism (see Lemma 2.2.17). Therefore, we need to
prove that the image of AR

g,n,P (respectively ΩMinc
g (Z,P)R) under Φi, j (respectively

proj j,i) is included in P̃ j,n j+i (respectively J̃ j,n j+i).

Let us consider a differential in AR
g,n,P and one of the marked points x j,n j+i

corresponding to a pole. There are two possibilities.

• The point x j,n j+i belongs to a stable irreducible component of level 0. In
which case the principal part belongs to Pn j+i \An j+i;
• The point x j,n j+i belongs to an unstable rational component. In this case

the differential restricted to this rational component is necessarily given
by dw/wp j,i (the marked point is at 0 and the node at∞). Indeed we have
supposed that Z is complete thus the differential has no unmarked on this
rational component. The principal part is 0.

Therefore the image of AR
g,n,P under Φ j,i is included in P̃ j,n j+i. Now, let us consider

a differential in ΩMinc
g (Z,P)R, and one of the marked points x j,n j+i corresponding

to a pole. Once again, there are two possibilities.

• The point x j,n j+i belongs to an irreducible component of level 0. In which
case the differential has a pole of order exactly p j,i at this marked point
and the jet at x j,n j+i is in J̃ j,ni+ j;
• The point x j,n j+i belongs to an irreducible component of level −` < 0.

Then the differential vanishes identically on this component and the jet at
x j,n j+i is 0.

Therefore the image of ΩMinc
g (Z,P)R under proj j,i is included in J̃ j,n j+i. This com-

pletes the proof. �

2.3.3.2. The image of the AΓ,I,l under the morphism stab. To complete the de-
scription of the map stab we describe the image of the strata defined by admissible
graphs.



2.3. THE INDUCTION FORMULA 61

Definition 2.3.16. Let (Γ, I, l) be a semi-stable graph with a twist and a level
structure. We say that (Γ, I, l) is twisted stable graph if Γ is a stable graph (in the
sense of Definition 1.4.3).

Remark 2.3.17. For any choice of Z, the set of admissible and realizable graphs
is finite. Besides, if (Γ, I, l) is an admissible graph, then the locus AΓ,I,l is empty
if (Γ, I, l) is not realizable. Thus Lemma 2.3.11 asserts that AR

gZ,P is stratified by
finitely many strata corresponding to admissible graphs.

Definition 2.3.18. Let (Γ, I, l) be a semi-stable graph with a twist and a level
structure. We say that (Γ, I, l) is realizable if for all vertices v of Γ we have∑

( j,i)7→v

k j,i −

∑
( j,n j+i)7→v

p j,i +

∑
h7→v

I(h) − 1≤ 2g(v) − 2

where the sums are respectively over marked points corresponding to zeros, marked
points corresponding to poles and half-edges adjacent to v.

Lemma 2.3.19. If Z is complete, then there exists a bijection between the set
of realizable and admissible graphs and the set of realizable and twisted stable
graphs.

PROOF. To an admissible graph we assign its stabilization. The twists and lev-
els on this graph are obtained by restriction of the former twists and level functions.

From a twisted stable graph, we construct an admissible graph by adding an
unstable vertex for each marked point corresponding to a pole of order p greater
than 1 and adjacent to a vertex of level < 0. This new vertex is of level 0 and the
new edge between this vertex an the rest of the curve has twists given by +p−1 and
−p + 1. �

Notation 2.3.20. Suppose that Z is complete and (Γ, I, l) is a realizable stable
twisted graph. Let (Γ′, I′, l′) be the corresponding admissible graph. We denote by
ΩMinc

Γ,I,l the locus stab(AΓ,I,l)⊂ KMg,n(P).

Example 2.3.21. On Figure 2 we have represente the stabilization of the admissi-
ble graph of Figure 1.

2.3.3.3. Stratification of ΩMinc
g (Z,P)R. Recall the main result of [3].

Lemma 2.3.22. (Theorem 1.3 of [3]) Suppose that Z is complete and that the triple
(g j,n j,Pj) is stable for all 1 ≤ j ≤ q. Let (Γ, I, l) be a stable graph. The locus
ΩMinc

Γ,I,l lies in the closure of ΩMinc
g (Z,P)R. Conversely the space ΩMinc

g (Z,P)R

is the union of the ΩMinc
Γ,I,l for all stable graphs (Γ, I, l).

Remark 2.3.23. The statement here is slightly more general than Theorem 1.3
of [3]. Indeed it takes into account possible disconnected basis and general choices
of vector subspace R⊂R. However all arguments in the proof of [3] can be adapted
mutatis mutandis to get the general statement above.
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FIGURE 2. Stable twisted graph of genus 7.

PROOF OF LEMMA 2.3.11. Suppose that Z is complete and that the triple
(g j,n j,Pj) is stable for all 1 ≤ j ≤ q. Then, using Lemma 2.3.22 and Proposi-
tion 2.3.14 we automatically get

AR
g,Z,P =

⋃
AΓ,I,l

where the union is taken over all admissible graphs. Therefore we only need to
prove that the statement of Lemma 2.3.11 is still valid if we allow unstable base
curves and non complete lists of vectors Z.

Unstable basis. We assume that Z is complete but we no longer impose that the
base curves are stable. Then on a rational component with two point the only
possible configuration is P = (p) and Z = (p − 2). This is a closed point in H0,1,(p)
Thus the statement of Lemma 2.3.11 is still valid if we consider unstable basis.

Non complete Z. We no longer impose that Z is complete. The space AR
g,Z,P is the

union of the π(AR
g,Z′,P) for all exterior completion Z′ of Z (π being the forgetful

map of the zeros which or accounted for by Z). Therefore we have

AR
g,Z,P =

⋃
π(AR

g,Z′,P) =
⋃
π(AΓ,I,l),

where the last union is over all possible completions and admissible graphs. �

2.3.4. Description of boundary divisors. Let g,Z,P and R be as in the pre-
vious sections. In the proof of the main theorem, we will be interested in the
vanishing loci of sections of certain line bundles over AR

g,Z,P. That is why we need
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to understand the boundary divisors of AR
g,Z,P. The purpose of this section is to de-

termine the set of admissible graphs which are associated to strata of codimension
1, that is to divisors.

Lemma 2.3.24. Let (Γ, I, l) be an admissible graph. The codimension of AΓ,I,l in
AR

g,Z,P is greater than or equal to the depth of the level structure l.

PROOF. Let Γ, I, l be an admissible graph of depth d. Let (Γ′, I′, l′) be the
admissible graph obtained by merging the levels 0 and −1. The locus AΓ,I,l lies
in the closure of AΓ′,I′,l′ . Indeed this follows from Lemma 2.3.11 applied to the
stratum A0

Γ′,I′,l′ : the sub-graph of (Γ, I, l) obtained by keeping only vertices of level
0 and -1 determines a boundary stratum of A0

Γ′,I′,l′ . Thus AΓ,I,l is of dimension at
most dim(AΓ,I,l) − 1. Therefore, every time we merge two levels we decrease the
codimension at least by 1. �

Lemma 2.3.25. Let (Γ, I, l) be an admissible graph of depth 1. The codimension
of AΓ,I,l in AR

g,Z,P is greater than the number of horizontal edges.

PROOF. We can independently merge vertices along horizontal edges (See
“classical plumbing” in [3]). At every merging, we decrease the codimension by at
least 1. �

It follows from Lemmas 2.3.24 and 2.3.25 that a nontrivial admissible graph
corresponding to a divisor of AR

g,Z,P is necessarily of depth 1 and has no horizontal
edges.

Notation 2.3.26. We denote by Bic(g,Z,P,R) the set of graphs with two levels
and possessing no horizontal edges. We will call such graphs bi-colored graphs.

Remark 2.3.27. Elements of Bic(g,Z,P,R) are twisted graphs with level struc-
tures. However, the level structure of a bi-colored graph is completely determined
by the twists. This is why we will denote (Γ, I) the elements of Bic(g,Z,P,R).

We recall from Section 2.3.2 that the boundary strata associated to a graph of
depth 1 is equal to p(AR1

g1,Z1,P1
)×AR0

g0,Z0,P0
, where p is the map from AR1

g1,Z1,P1
to the

moduli space of curvesMg1,n1,m1 .

Proposition 2.3.28. Let (Γ, I) be a bi-colored graph. We assume that AΓ,I,l is
nonempty. Then AΓ,I,l is a divisor of AR

g,Z,P if and only if (g1,Z1,P1,R1) satisfies
the condition (??). In which case we will say that the (Γ, I) satisfies condition (??).

PROOF. We have the equality

dim(AR
g,Z,P) = dim(AΓ,I,l) + dim(AR1

g1,Z1,P1
) − dim(p(AR1

g1,Z1,P1
)).

Therefore the stratum AR
g,Z,P is a divisor if and only if the fibers of p are of dimen-

sion 1. Thus the proposition is a direct consequence of Proposition 2.2.54. �

Notation 2.3.29. We denote by Div(g,Z,P,R) the set of bi-colored graphs (Γ, I)
which satisfies condition (??). For short we will call these elements admissible
divisor graphs.
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Notation 2.3.30. Let 1 ≤ j ≤ q and 1 ≤ i ≤ `(Z j). We denote by Z j,i the list of
vectors obtained from Z by increasing the ith coordinate of Z j by one.

Proposition 2.3.31. Let Z′ be a completion of Z and let (Γ, I, l) be an admissible
graph such that D = π(AΓ,I) is a divisor of AR

g,Z,P (where π is the forgetful map of
the points), then D is necessarily of one of the four kinds:

(1) the stratum AΓ,I for (Γ, I) ∈ Div(g,Z,P,R);
(2) the locus AR

g,Z j,i,P for some label ( j, i) corresponding to a marked point
which is not a pole;

(3) the locus AΓ,I,l for a P-admissible graph of depth 0 with a unique hori-
zontal edge;

(4) the locus AR′
g,Z,P for the vector subspace R′ ⊂ R defined by the condition:

resx j,n j+i = 0 for a choice of j and i such the point x j,n j+i corresponds to a
pole of order at most −1.

PROOF. Let Z′ be a completion of Z. If Z′ is not the maximal completion then
dim(AR

g,Z′,P) < dim(AR
g,Z,P). The only possible admissible graph is the trivial and

we obtain a divisor of type 2.
We suppose now that Z′ = Zm, then (Γ, I, l) is of depth less than 1. If (Γ, I, l)

is of depth 0 then (Γ, I, l) has at most one horizontal edge (type 3). If (Γ, I, l) is
of depth 1 then either all or none of the edges of (Γ, I, l) are contracted under the
forgetful map of the marked points which are not accounted for by Z (otherwise
this graph does not satisfy condition (??). If none of the edges are contracted, then
D is a divisor of type 1. If all edges are contracted then we get a divisor of type
2 or 4 (depending on whether there are legs corresponding to poles of order 1 on
level -1 vertices or not). �

Proposition 2.3.32. Let D1 and D2 be two divisors obtained from an admissible
graph as in Proposition 2.3.31. Then D1 and D2 have no common irreducible
components.

PROOF. The divisors D1 and D2 can be of one of the four types described in
Proposition 2.3.31. We will prove this proposition by considering every possible
cases.

Type 1/type 1. Let (Γ, I) and (Γ′, I′) in Div(g,Z,P,R) such that AΓ,I and AΓ′,I′

have a common irreducible component D. The component D determines a semi-
stable graph by taking the dual graph of a any point of D∩AΓ,I , therefore Γ = Γ′.
Moreover, the vertices of Γ with identically zero differentials are the vertices of
level −1. Therefore the level structure (or more precisely the signs of the twists)
are the same for (Γ, I) and (Γ′, I′). Now the twist at an edge is determined by the
vanishing order of the differential at the corresponding node on the component of
level 0 for any point in D∩AΓ,I . Therefore (Γ, I) = (Γ′, I′). Thus divisors of type 1
have no common irreducible components.

Types 2 and 4. The underlying generic curve of the divisors of type 2 or 4
is a curve without singularities, therefore divisors of type 2 or 4 do not intersect
divisors of type 1 or type 3. Now the differentials of the generic differentials of
two divisors of type 2 have different vanishing order at two of the marked points
(either a marked zero or a marked pole of order −1).
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Type 3. Two divisors of type 3 are distinguished by the toplogical types of a
generic curve. Besides, a divisor of type 3 is distinguished from a divisor of type 1
because none of the components carries a vanishing differential in a divisor of type
3. �

Locus of generic points. Let (Γ, I) ∈ Div(g,Z,P,R). We recall that

AΓ,I = p(AR1

g1,Z1,P1
)×AR0

g0,Z0,P0
,

where p : AR1

g1,Z1,P1
→Mg1,n1,m1 is the forgetful map. The condition (??) ensures

that there exists an open dense locus Agen
1 ⊂ AR1

g1,Z1,P1
such that the map p : Agen

1 →
p(Agen

1 ) has fibers of dimension 1 (see Proposition 2.2.54). Then we set

Agen
Γ,I = Agen

1 ×AR0

g0,Z0,P0
.

This open locus of generic points will be important for us because the map

p : Agen
1 ×AR0

g0,Z0,P0
→ Agen

Γ,I = p(Agen
1 )×AR0

g0,Z0,P0

is a line bundle minus the zero section.

Notation 2.3.33. We denote by p :NΓ,I → Agen
Γ,I this line bundle.

2.3.5. Class and multiplicity of a boundary divisor. Let g,Z,P and R be as
in the previous sections. We want to compute the Poincaré-dual class of the divisor
associated to an element of Div(g,P,Z,R).

Let (Γ, I) be an admissible graph in Bic(g,P,Z,R) (this graph is a divisor or
not). We recall that

AΓ,I ' p(AR1

g1,Z1,P1
)×AR0

g0,Z0,P0
⊂Mg1,n1,m1×Hg0,n0,P0 .

Now, we recall that the semi-stable graph Γ determines a stratum

ζ#
Γ :HΓ =HRΓ

gΓ,nΓ,PΓ
→Hg,n,P

(see Section 2.2.10). We define the linear subspace RΓ⊂RΓ, as the space of vectors
of residues such that the residues at poles on components of level −1 (including the
edges) are equal to zero. Moreover, we denote by

dΓ = dim(RΓ) − dim(RΓ).

The Poincaré-dual cohomology class of PHRΓ

gΓ,nΓ,PΓ
in H∗(PHΓ,Q) is equal to ξdΓ

(see Lemma 2.2.27). Moreover we have

HRΓ

gΓ,nΓ,mΓ,PΓ
'Hg0,n0,P0×

∏
v∈V 1

Hgv,nv+mv

 ,
where the poles at vertices of level 0 are the marked poles of Hg,n,P restricted to
each vertex and the half-edges are counted as marked points without poles; the
spaces at the vertices of level −1 are the spaces of holomorphic differentials. We
consider the projection
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O(−1) //

��

∏
v∈V1

p∗v (Hgv,nv+mv)

vv

PHRΓ

gΓ,nΓ,mΓ,PΓ
,

where pv is the forgetful map fromHgv,nv+mv toMgv,nv+mv . Therefore the Poincaré-
dual class of the locus of differentials with vanishing differential on the level −1 in
H∗(PHΓ,Q) is given by

ξdΓ ·
∏
v∈V1

(ξgv +λ1ξ
gv−1

+ . . .+λgv).

We denote this locus by PÃΓ,I ⊂ PHΓ. We have a natural identification:

PÃΓ,I ' PHg0,n0,P0×Mg1,n1,P1 .

We denote by Φ0 and Φ1 the projections on both factors.

Definition 2.3.34. The class aΓ,I ∈ H∗(PHg,n,P,Q) is given by

ζ#
Γ∗

ξdΓ ·Φ∗1(p∗[PAR1

g1,Z1,P1
]) ·Φ∗0[PAR0

g0,Z0,P0
]
∏

v∈V 1

(
ξgv +λ1ξ

gv−1
+ . . .+λgv

) .
Proposition 2.3.35. Let (Γ, I) ∈ Bic(g,P,Z,R). We have:

(1) if (Γ, I) is divisor graph then aΓ,I = [PAΓ,I];
(2) If (Γ, I) is not a divisor graph then aΓ,I = 0;

(3) if [PAR0

g0,Z0,P0
] and [PAR1

g1,Z1,P1
] are tautological and can be explicitly com-

puted then so is aΓ,I .

PROOF OF THE FIRST AND SECOND POINTS. If (Γ, I) is a divisor graph then
p : AR1

g1,Z1,P1
→ Im(p) is of degree 1, thus p∗[AR1

g1,Z1,P1
] = [p(AR1

g1,Z1,P1
)]. Therefore,

by construction aΓ,I is the Poincaré-dual class of PAΓ,I .
If (Γ, I) belongs to Bic(g,P,Z,R) \Div(g,P,Z,R) then the fibers of the map

p : PAR1

g1,Z1,P1
→ Im(p) are of positive dimension and p∗[PAR1

g1,Z1,P1
] = 0. �

PROOF OF THE THIRD POINT. We assume that [PAR0

g0,Z0,P0
] and [PAR1

g1,Z1,P1
]

are tautological and can be explicitly computed.
The projections Φ1 is equal to the composition of the forgetful map from HΓ

toMred
Γ with the projection to the vertices of level −1. Thus by definition, if β is a

tautological class ofMg1,Z1,m1 then Φ∗1β is a tautological class of H∗(PHg,Z,P,Q).

Besides, if [PAR1

g1,Z1,P1
] is tautological and be explicitly computed then so is the

class p∗[PAR1

g1,Z1,P1
]: indeed the Segre class of Hg1,n1,P1 is a tautological class of

Mg1,m1,P1 .
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The map Φ1 is equivariant with respect to the C∗-action, thus we have Φ−1
1 (c1(O(1)) =

c1(O(1). Besides the following diagram commutes:

PÃΓ,I
Φ0 //

��

PAg0,n0,P0

p
��

Mred
Γ

//Mred
g0,n0,m0

Thus, if β is a tautological class ofMred
g0,n0,m0

, then the class Φ∗0(p∗(β)) is a tauto-
logical class of PHΓ and thus a tautological class of H∗(PHg,n,P,Q). �

Definition 2.3.36. Let (Γ, I) ∈ Bic(g,P,Z,R). The multiplicity of (Γ, I)

m(I) =
∏

h→V 0

I(h),

where the product runs over the half-edges which are not legs, pointing to vertices
of level 0. The least commune multiple and the group of roots of the twist are

L(I) = LCM
(
{I(h)}h→V 0

)
,

GI =

( ∏
h→V 0

ZI(h)

)/
ZL(I).

Let 1 ≤ j ≤ q and 1 ≤ i ≤ n j. Let ki, j be the ith entry of Z j. We consider the
line bundle:

O(−1)⊗Lk j,i+1
j,i

∣∣∣∣
AR

g,P,Z

' Hom
(
O(−1),Lk j,i+1

j,i

)∣∣∣∣
AR

g,P,Z

,

where L j,i is the cotangent line bundle to the i-th marked point of j-th connected
component. Let s j,i be the natural section of the line bundle Hom(O(−1),Lk j,i+1

j,i )|AR
g,P,Z

which maps a differential to its (k j,i + 1)st-order term at the ith marked point of the
jth connected component.

Lemma 2.3.37. Then the section s j,i vanishes with multiplicity 1 along PAR
g,Z j,i,P.

PROOF. Let y0 be a point of PAR
g,Z j,i,P. We have seen in the proof of Lemma 2.2.32

that a neighborhood U of y0 in PAg,Z j,i,P is parametrized by the relative cohomol-
ogy group H1(Σ \ {xn+1,...,xn+m},{x1, . . . ,xn};C) and that a neighborhood of y0 in
PHn,m,P is parametrized by H×

∏n
i=1Z j,i where Z j,i is an open neighborhood of 0

in Cki, j−1.
Thus a neighborhood of U in PAR

g,Z,P is parametrized by U×∆ where ∆ is an
open disk of C with parameter ε. Indeed a deformation of an element of PAR

g,Z j,i,P
will determine a coordinate z and a complex number ε such that the differential
is given by d(zk j,i+1(z + ε)) in a neighborhood of x j,i . This choice is unique up to
mutiplication of z by a (k j,i + 2)nd-root of unity. Fix a choice for the coordinate z
then we have s j,i(u, ε) = ε. Thus the vanishing multiplicity of s j,i along PAR

g,Z j,i,P is
equal to 1. �
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Notation 2.3.38. We denote by Bic(g,P,Z,R) j,i ⊂ Bic(g,P,Z,R) the subset of
bi-colored graphs such that the ith marked point of the jth connected component
belongs to a level -1 vertex and we will denote by

Div(g,P,Z,R) j,i = Bic(g,P,Z,R) j,i∩Div(g,P,Z,R).

Lemma 2.3.39. The divisors contained in the vanishing locus of s j,i are exactly
the divisors corresponding to admissible graphs in Div(g,P,Z,R) j,i and the divisor
PAR

g,Z j,i,P. No two of these divisors have a common irreducible component.

PROOF. It is a consequence of Propositions 2.3.31 and 2.3.32. �

The first Chern class ofO(−1)⊗Lk j,i+1
j,i is equal to ξ + (k j,i + 1)ψ j,i therefore we

deduce from Lemmas 2.3.37 and 2.3.39 that(
ξ + (k j,i + 1)ψ j,i

)
· [PAR

g,Z,P] = [PAR
g,Z j,i,P] +Z,

where Z is a cycle supported on the union of PAΓ,I for (Γ, I) ∈ Div(g,P,Z,R) j,i.
In the next section, we will prove that Z =

∑
(Γ,I)∈m(I)aΓ,I where the sums runs

over all (Γ, I) in Div(g,P,Z,R) j,i. We can already remark that Proposition 2.3.35
implies the following

Corollary 2.3.40. The following equality holds:∑
(Γ,I)∈Bic(g,P,Z,R) j,i

m(I) aΓ,I =
∑

(Γ,I)∈Div(g,P,Z,R) j,i

m(I) aΓ,I.

PROOF. It follows from the fact that if (Γ, I)∈Bic(g,P,Z,R) j,i\Div(g,P,Z,R) j,i

then aΓ,I = 0. �

2.3.6. Induction formula. With the above notation, we state the main theo-
rem of the present Chapter.

Let g = (g1, . . . ,gq), Z = (Z1, . . . ,Zq), P = (P1, . . . ,Pq) be lists of nonnegative
integers (genera), vectors of nonnegative integers (orders of zeros), and vectors
of positive integers (orders of poles), respectively. Let n and m be two lists of
q nonnegative integers given by n j = length(Z j), m j = length(Pj). Let R ⊂ R be
a space of residue conditions. We assume that (g,Z,P) satisfy the semi-stability
condition of Definition 2.2.55.

Let 1 ≤ j ≤ q and let 1 ≤ i ≤ n j. Let k j,i be the ith element of Z j. De-
note by Z j,i the list of vectors obtained from Z by increasing ki by 1. Denote
by ψ j,i ∈ H2(PHg,n,P,Q) the ψ-class corresponding to the ith marked point on the
jth connected component of the curve.

Recall that to each bi-colored graph (Γ, I) ∈ Bic(g,P,Z,R) j,i we have assigned
a cohomology class αΓ,I ∈ H∗(PHg,n,P,Q) and a positive integer m(I) (see Sec-
tion 2.3.5).

Theorem 2.3.41. In H∗(PHg,n,P,Q) we have

(2.3.1) [PAR
g,Z j,i,P] = (ξ + (k j,i + 1)ψ j,i) · [PAR

g,Z,P] −

∑
(Γ,I)∈Bic(g,P,Z,R) j,i

m(I) aΓ,I
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if 2g j − 2 + n j + m j > 0, or

(2.3.2) [PAR
g,Z j,1,P] =

p − k − 2
p − 1

ξ · [PAR
g,Z,P]

if g j = 0, Z j = (k), Pj = (p).

PROOF OF (2.3.1). First of all, by Corollary 2.3.40 we replace the sum over
bi-colored graphs in Equation (2.3.1) by a sum over divisor graphs, i.e. elements
of Div(g,Z,P,R) j,i. We will prove the equality in this form.

As in Section 2.3.5 consider the line bundle Hom(O(−1),Lk j,i+1
j,i )→ PAR

g,Z,P.
Its first Chern class equals ξ + (k j,i + 1)ψ j,i. Moreover, it has a natural section s j,i

which maps a differential to its (k j,i + 1)st-order term at the marked point ( j, i).
Lemma 2.3.11 states that the locus PAΓ,I lies in the closure of PAR

g,Z,P. In

Lemma 2.3.37 we showed that s j,i vanishes along PAR
g,Z j,i,P with multiplicity 1. In

Lemma 2.3.39 we showed that the remaining vanishing loci of s j,i are supported on
the PAΓ,I for (Γ, I) of Div(g,Z,P,R) j,i. Now we claim that the vanishing order the
s j,i along the locus PAΓ,I is equal to m(I) (see Definition 2.3.36). Lemma 2.3.42
below implies this statement and thus Equation (2.3.1). �

We recall that for a divisor graph (Γ, I) ∈ Div(g,Z,P,R) j,i we have (see Sec-
tion 2.3.2)

AΓ,I = p(AR1

g1,Z1,P1
)×AR0

g0,Z0,P0
,

where
p : AR1

g1,Z1,P1
→Mg1,n1,m1

is the forgetful map (see Section 2.3.4). Moreover we have defined an open dense
subset of generic points Agen

1 ⊂ AR1

g1,Z1,P1
such that p(Agen

1 ) is dense and open in

p(AR1

g1,Z1,P1
) and the map p : Agen

1 → p(Agen
1 ) is a line bundle minus the zero section.

We denote by
p :NΓ,I → Agen

Γ,I

the pull-back of this line bundle to Agen
Γ,I = p(Agen

1 )×AR0

g0,Z0,P0
.

Also recall the group GI and the least common multiple L(I) assigned to the
set of twists in Section 2.3.5.

Lemma 2.3.42. Let (Γ, I) be a divisor graph in Div(g,Z,P,R) j,i. Let y0 ∈ PAgen
Γ,I .

Let ∆ be an open disk in C containing 0 and parametrized by ε. There exists
an open neighborhood U of y0 in PAgen

Γ,I together with a map ι : U ×∆×GI →
PHg,n,m,P satisfying:

• the restriction ι|U×0×g is the identity on U for all g ∈ GI;
• the image of the restriction ι|ε 6=0 lies in the open stratum PAR

g,Z,P;
• for all g ∈ GI , the section s j,i restricted to ι(U ×∆× g) vanishes along
ι(U×0×g) with multiplicity L(I);
• the map ι : U ×∆×GI → PAR

g,Z,P is a degree 1 parametrization of a

neighborhood of U in PAR
g,Z,P.
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The proof of Theorem 2.3.41 immediately follows from Lemma 2.3.42 because
the vanishing order of s j,i along PAΓ,I is equal to

L(I) ·Card(GI) = m(I).

PROOF OF LEMMA 2.3.42. We prove the lemma in two steps: first we will
prove the first three points of the lemma and then we will prove that ι is a parametriza-
tion of degree 1 of a neighborhood of U in AR

g,Z,P.
Proof of the first three points. For the sake of clarity we will successively prove

the first three points at three levels of generality: first for a divisor graph with one
edge, then for divisor graph with R1 = {0} and finally in full generality.

Divisor graph with one edge. For the moment we place ourselves in the sim-
plest case: (Γ, I) is an admissible graph with two vertices, one at level 0 and one at
level −1. We suppose that there is only one edge with a twist given by k > 0. Let
y0 be a point of PAgen

Γ,I . Let U be an open neighborhood of y0 in PAgen
Γ,I . A point y

of U is given by
([C0], [C1],x0,x1, [α0]),

where C0 and C1 are the curves corresponding to the two vertices of the graph; x0

and x1 are their marked point sets; α0 is a differential on the curve C0 and [α0]
its equivalence class under the C∗-action. More precisely, we denote by α0(y) a
nonvanishing section of the line bundle O(−1) over U . (Also recall that on C1 the
differential vanishes identically.)

The condition that y∈Agen
Γ,I implies that the curve C1 carries a unique meromor-

phic differential α1 with zeros and poles of prescribed multiplicities at the marked
points, up to a scalar factor. Let α1(y) be a nonvanishing section of the line bundle
NΓ,I , i.e., a choice of the scalar factor for each point y.

At the neighborhood of the node the curves C1 and C0 have standard coordi-
nates z and w such that α0 = d(zk) and α1 = d( 1

wk ). The local coordinates z and w
are unique up to the multiplication by a kth root of unity. We fix one such choice in
a uniform way over U . We define a family of curves C(y, ε) over U×∆ by smooth-
ing the node between C0 and C1 via the equation zw = ε, where ε is the coordinate
on the disc ∆ and z,w are as above. The differentials α0 and εkα1 automatically
glue together into a differential on C(y, ε).

The deformation that we have constructed does not depend on the choice of
standard coordinates z and w. For instance, if we multiply z by a kth root of unity
ζ, the equation of the deformation becomes zw = ζε, which is isomorphic to the
original deformation under a rotation of the disc ∆.

The section s j,i vanishes with multiplicity k along U : indeed we have explicitly

s j,i(y, ε) = εk ·α1(y).

Divisor graph (Γ, I) with R1 = {0}. We suppose now that the space R1 is trivial
(residues at the nodes between vertices of level 0 and -1 are equal to 0). A point y
in U still determines

([C0], [C1],x0,x1, [α0], [α1])
where α0 and α1 are sections of O(−1) and NΓ,I as in the previous paragraph.

Let e be an edge of Γ. We denote by ke the positive integer equal to |I(h)| for
any of the two half-edges of e. Let ze and we be a choice of standard coordinates in



2.3. THE INDUCTION FORMULA 71

a neighborhood of the node corresponding to e: i.e. α0 = d(zke
e ) and α1 = d(1/wke

e ).
This choice of standard coordinates being fixed for all edges, we choose, on top of
that, ζe a ke-th root of unity for each edge e.

We define a family of curves C(y, ε) over U ×∆ by smoothing the node corre-
sponding to an edge e of Γ via the equation zewe = (ζeε)L(I)/ke where ε is the coor-
dinate on the disc ∆. The differentials defined by α0 and by εL(I)α1 automatically
glue together into a differential on C(y, ε).

A multiplication of ε by a L(I)-th root of unity ζ gives an isomorphic defor-
mation. Thus two choices of roots (ζe)e∈Edges and (ζ ′e)e∈Edges gives isomorphic
deformation if ζ ′e = ζL(I)/keζe for all edges. Once again we get that the vanishing
multiplicity of s j,i along U is L(I).

General divisor graph (Γ, I). We no longer impose restrictions on R1. We still
define

([C0], [C1],x0,x1,α0,α1),
as above. Moreover we define the section r

r(y) = (re(y))e∈Edges,

where re(y) is the residue of α1 at the node of C1 corresponding to the edge e. For
every edge e, we fix a choice of standard coordinates of ze and we in a neighborhood
of the node corresponding to e, i.e., coordinates satisfying α0 = d(zke

e ) and α1 =
d(1/wke

e ) +
re(y)dwe

we
.

Using Proposition 2.2.35, we get a family of differentials (C̃0,x0, α̃0) parametrized
by U×∆ such that:

• when ε = 0, we have (C0,x0,α0) = (C̃0,x0, α̃0);
• the zeros of the differential which are not at the marked points corre-

sponding to nodes are of fixed orders;
• the differential α̃0 has at most simple poles at the nodes of C̃0 and the

residue at the node corresponding to the edge e equals −εL(I)re(y);
• the vector of residues at the poles of α̃0 lies in R;
• for each node corresponding to an edge e with a twist ke, the family of

differentials defined by U ×∆ is a standard deformation of d(zke
e ) (see

Definition 2.2.30).

We use the fact that the family parametrized by U ×∆ is a standard deformation
of d(zke

e ) to apply Proposition 2.2.31. At each node e the differential α̃0 can be
written in the form d(zke

e ) − εL(I)r(u) dze
ze

in any annulus contained in a neighborhood
of the node. Therefore we can still glue the two components together along this
annulus with the identification zewe = ζeε

L(I)/ke for any choice of the ke-th root of
unity ζe. The end of the proof is the same as for divisor graphs with trivial residue
conditions.

Proof of the fourth point. Now we will prove that the map ι : U ×∆×GI →
PAR

g,Z,P is a degree 1 parametrization of a neighborhood of U in PAR
g,Z,P.

First we prove that the image ι(U×∆×GI) covers entirely a neighborhood of
U in AR

g,Z,P. Let y0 = (C = C0∪C1,x0,x1,α0) be a point in Agen
Γ,I . Let ι̃ : ∆→Ag,Z,P be

a family of differentials such that ι̃(0) = y0 and ι̃(ε)∈ AR
g,Z,P for ε 6= 0. We denote by
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π : C →∆ the induced family of curves and by α the induced family of differentials
on the fibers of C →∆.

Let e be a node of C with a twist of order ke. Let γe be a simple loop in
the curve C0 around the node e. Let We be a neighborhood of γe in C such that
We∩π−1(ε) is an annulus for any ε small enough. Now, the differential α0 is given
by d(zke

e ) in a standard coordinate. Thus the differential α|π−1(ε) is given by d(zke
e ) +

φ(ε,ze)dze and we denote by re(ε) the integral of φ(ε,ze)dze along γe. We consider
the differential αe(ε) = dze +φ(ε,ze)dze − re(ε) dze

ze
. We fix a point p in the annulus

We∩π−1(ε), the function f : z 7→ (
∫ z

p αe)1/ke is uniquely determined for small values
of ε. This determines a coordinate (that we will still denote ze) such that α0 =
ze

kedze −ϕ(ε,ze) dze
ze

with ϕ holomorphic and thus a standard deformation of α0.
Proposition 2.2.31 implies that there exists a coordinate ze on this annulus such
that α|π−1(ε) = d(zke

e ) + re(ε) dze
ze

.
We fix ε small enough so that the coordinates ze are defined for all edges e. We

cut the curve π−1(ε) along simple loops contained in We. This gives two (possibly
disconnected) curves with boundary Copen

0 and Copen
1 . We “plug” the holes of Copen

0
with disks parametrized by the coordinate ze and the holes of Copen

1 with disks with
coordinate 1/ze. This determines two curves C0(ε) and C1(ε). On both C0 and C1,
the local chart used to “plug” the holes allow us to define differentials α0(ε) and
α1(ε).

The differential α1(ε) has a pole of order ke + 1 at we = 0; thus (C1,x1,α1)(ε)
is an element of AR1

g1,Z1,P1
. Now, at the level 0, we use Proposition 2.2.36: in a

neighborhood of y0 we can apply the retraction η. The point η((C0,x0,α0)(ε)) is a
point of AR0

g0,Z0,P0
. Therefore we define

y(ε) = (η(C0,x0,α0), (C1,x1,α1))(ε) ∈ Agen
Γ,I .

For all ε in a neighborhood of 0, the point ι̃(ε) lies in the deformation of y(ε) by the
family ι restricted to y(ε)×∆× g for some g ∈ GI (in fact here g = 1 because of
the choices of the parameters around y0 that we have fixed).

To finish the proof of the fourth point, we need to prove that the parametriza-
tion is of degree 1. For this, we once again use the retraction η defined in Propo-
sition 2.2.36. We have η ◦ ι = IdU , thus we only need to prove that for all y ∈U ,
the family ι restricted to y×∆×GI is of degree 1. We consider this family in the
moduli space of curves, i.e let

ι′ : ∆×GI → Mg,n,m

ε×g 7→ p(ι(y, ε,GI)).

This family is of degree one. Indeed the stackMΓ is regularly imbedded inMg,n,m
and its normal bundle is the direct sum of the Th⊗Th′ for all edges e = (h,h′) of Γ.
Thus the family ι′ is given by the family:

ι′ : ∆×GI →
⊕

(h,h′)∈Edges

Th⊗Th′

(
ε, (ζe)e∈Edges

)
7→

(
ζeε

L(I)/ke
)

e∈Edges
,

which is of degree 1. �
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PROOF OF FORMULA (2.3.2). We have seen that the space of differentials on
an unstable component is a weighted projective space parametrized by[

wp−1
+ a1wp−2

+ . . .+ ap−2w
] dw

w
,

where the weight of a j is j
p−1 . The fact that the order of the point x is k j,i is

equivalent to the vanishing of the terms ap−2, . . . ,ap−k j,i−3. Therefore, the class of

[PAR
g,Z j,i,P] is the closure of the vanishing locus ap−k j,i−2. Moreover we can easily

check that ap−1
p−k j,i+1 is a global section of O(−1)p−k j,i+1. �

2.3.7. Proof of Theorems 2.1.14, 2.1.16, and 2.1.18. We now have all in-
gredients to prove Theorem 2.2.59: for all g,Z,P (list of integers and vectors
of integers) and R vector subspace of R, the Poincaré-dual class of

[
PAR

g,Z,P

]
in

H∗
(
PHg,Z,P,Q

)
can be explicitly computed and is tautological (see Section 2.2.9).

PROOF OF THEOREM 2.2.59. We prove Theorem 2.2.59 by induction on |Z|=∑
k∈Z k.

Base of the induction: |Z| = 0. If Z is trivial then AR
g,Z,P is dense in Hg,n,P.

Therefore
[PAR

g,Z,P] = [PHR
g,n,P] = ξdim(R)−dim(R),

by Lemma 2.2.27.
Induction. Now we assume that |Z| > 0. The induction Formulas (2.3.1) and

(2.3.2) of Theorems 2.3.41 express the class
[
PAR

g,Z,P

]
in terms of classes with

smaller sum of the order of zeros. We only need to prove that the class aΓ,I is
tautological for any (Γ, I) ∈ Div(g,Z,P,R).

The vectors of zeros Z0 and Z1 of the levels 0 and −1 satisfy |Zi|< |Z|. There-

fore the classes [PAR1

g1,Z1,P1
] and [PAR0

g0,Z0,P0
] can be computed and are tautological.

Using Proposition 2.3.35, this implies that the class aΓ,I is tautological and can be
computed. �

Theorems 2.1.14, 2.1.16, and 2.1.18 stated in Section 2.1.4 are straightforward
corollaries of Theorem 2.2.59.

PROOF OF THEOREMS 2.1.14, 2.1.16, AND 2.1.18. Theorem 2.1.14 is the
special case of Theorem 2.2.59 for a connected and stable curves. Theorem 2.1.18
is a consequence of 2.1.14 and Proposition 2.1.4 (the Segre class of the spaces of
stable differential is tautological).

To prove Theorem 2.1.16, we recall that we denote by π̃n : PMg,n → PMg,
the forgetful map of points. The bundleHg,n is the pull-back ofHg by πn, then ξ ∈
H∗(PHg,n,Q) is the pull-back of ξ ∈H∗(PHg,Q). Therefore the push-forward of a
tautological class of RH∗(PHg,n,Q) by πn is in RH∗(PHg,Q) and can be explicitly
computed.

If Z = (k1, . . . ,kn) is complete, the map π̃n restricted to PAg,Z is finite of degree
Aut(Z) onto PH[Z]. We have[

PH[Z]
]

=
1

Aut(K)
· π̃n∗

[
PAg,Z

]
,
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and the class
[
PH[Z]

]
is tautological and can be computed. �

2.4. Examples of computation

We give two examples of computation: the first one is a computation in the pro-
jectivize Hodge bundle (we forget the marked points), the second is a computation
in the moduli space of curves (we forget the differential).

2.4.1. The class [PHg(3)]. We consider here g > 2 and Z = (3,1 . . . ,1). We
have seen in the introduction the computation of [PAg,(2)]. Therefore, in order to
compute [PAg,(3)] we need to list the divisor graphs contributing to [PAg,(3)] − (ξ +

3ψ1)[PAg,(2)].

g=0 I= •
2

•

0

II= • • •

0

III= •

0

g=1 IV= •
2

1

V= •

1

VI= • •

1

g=2 VII= •

2

FIGURE 3. List of boundary terms in [PAg,(3)] − (ξ + 3ψ1)[PAg,(2)].

We have represented vertices of level -1 with their genera and the vertices of
level 0 by bullets (the sum will run over all possible distribution of the genera of
vertices of level 0). The marked point always belong to the unique vertex of level
−1. The twists are represented by one number because the level structure already
implies the sign of the twist on each half-edge. Finally we only represented the
twists of absolute value greater than 1.

After push-forward by the forgetful map of the marked point, we get the fol-
lowing formula for the class [PH(3,1, . . . ,1)] ∈ H∗(PHg,Q):

[PH(3,1, . . . ,1)] = (12g − 12) ξ2
+
(
11κ1 − δ − δsep − 5 1 •

)
ξ

+

(
6κ2 − •ψe • − 1/12 0 •

)
.

We explain the notation of the above expression. If the graph is not decorated,
then the notation stands for the push forward of the fundamental class of MΓ

under ζγ . If a graph is decorated with classes Pv inMg(v),n(v) for each vertex then
the notation stands for ζγ∗(

∏
Pv). These classes are either ψi for a marked point,

ψe for an half-edge or λi and κi for a vertex. In the above expression there is only
one decoration ψe on a half-edge.

Remark 2.4.1. For g = 3, we can compute p∗[PA3,(3)] ∈ H0(M3,Q) ' Q, where
p is the forgetful map of the differential. We get p∗[PAg,(3)] = 24, the number of
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ordinary double points of a general quartic plane curve. In genus 3, we can also
compute p∗(π∗[PA3,(2,2)]) = 2× 28, i.e. two times the number of bitangents to a
general quartic plane curve.

2.4.2. The class of H3(4). Here g = 3 and µ = 4. We will compute the class
H3(4) = π∗[PA3,(4)] ∈ H4(M3,1). We will not give the details of the computation
however we have

[H3(4)] = λ2 − 10ψ1λ1 + 35ψ2
1 − 5 0 2 − 1 1 + 6 1 1 1

+ 1 1 1 + 6 1 2

λ1

− 34 1 2

ψ1

− 11 1
ψe

2

+ 1 2

λ1

− 10 1 2

ψ1

− 1
ψe

2

We explain the notation of the above expression. The legs on the graphs stands for
the only marked point. We have decorated graph with classes Pv inMg(v),n(v) for
each vertex. These classes are either ψ1 (for the marked point), ψe for an half-edge
or λ1 for a vertex.

We recall that H3(4) has two connected components (hyperelliptic and odd).
In this case one can compute [H3(4)hyp] by using the work of Faber and Pandhari-
pande (see [26]). This way one can also compute [H3(4)odd] = [H3(4)]−[H3(4)hyp].
In general, it is possible to compute the class of the hyperelliptic component but we
do not know how to compute separately the classes of odd and even components
for g≥ 4.

Felix Janda has compared this expression with the expression of Conjecture B.
The two expressions agree modulo tautological relations (see Chapter 5 for presen-
tation of the conjecture).

If we forget the marked point, then we get a class in Pic(Mg)⊗Q. Using the
string and dilaton equations and Mumford’s formula for κ1 we get

π∗[H3(4)] = 0 − 10×4 λ1 + 35 κ1 − 5 δnonsep − 0 + 6 ·0
+ 0 + 6 ·0 − 34 δsep − 11 δsep

+ 0 − 10×3 δsep − δsep

= 380 λ1 − 40 δnonsep − 100 δsep.

The expression agrees with the formula of Scott Mullane (see [61]).

2.5. Relations in the Picard group of the strata

We fix the notation for all the section. Let g,n,m≥ 0 such that 2g−2+n+m> 0.
Let Z = (k1, . . . ,kn) and P = (p1, . . . , pn) be vectors of positive integers such that
|Z|− |P| = 2g − 2. In this section we consider the space Hg(Z − P) ⊂Mg,n+m (see
Section 2.1.4 for definitions). The purpose is to define several natural classes in
Pic(Hg(Z − P))⊗Q and compute relations between these elements. Namely there
are two types of classes which arise naturally:
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• Divisors associated to admissible graphs (see Sections 2.3.2 and 2.3.4);
• Intersections ofHg(Z − P) with the tautological classes of A1(Mg,n).

2.5.1. Classes defined by admissible graphs. We consider the moduli space
of stable differentialsHg,n,P and the locus Ag,Z,P ⊂Hg,n,P. We have seen that Ag,Z,P

admits a stratification indexed by admissible graphs (see Lemma 2.3.11). In this
section, we describe the set of admissible graphs (Γ, I, l) such that p(AΓ,I,l) is a
divisor in Hg(Z − P) = p(Ag,Z,P), where we recall that p : Hg,n,P →Mg,n+m is the
forgetful map.

The map p : PAg,Z,P → Hg(Z − P) is an isomorphism (see Lemma 2.2.37).
Therefore an admissible graph (Γ, I, l) which determines a divisor in Hg(Z − P)
needs to correspond to a divisor in Ag,Z,P. We have seen that an admissible graph
(Γ, I, l) corresponds to a divisor of Ag,Z,P if and only it is of one of the three follow-
ing types (see Section 2.3.4):

(1) the admissible graph of depth 0 with one vertex and one edge;
(2) an admissible graph of depth 0 with two vertices and one edge;
(3) a bicolored graph that satisfies the condition (??).

Proposition 2.5.1. Let (Γ, I, l) be an admissible graph. The locus p(PAΓ,I,l) is a
divisor ofHg(Z − P) if and only if:

• or (Γ, I, l) is of the type 1 above ;
• or (Γ, I, l) is a bicolored graph with one vertex of level −1, one stable

vertex of level 0 and possibly other semi-stable vertices of level 0.

We call irreducible divisor the divisor ofH(Z − P) of the first type. We denote this
divisor by D0 (with reduced structure) and by δ0 its class in Pic(Hg(Z − P))⊗Q.

In the second case, the stabilization of the graph Γ determines a unique stable
twisted graph of depth 1, (Γ′, I′) (we no longer write the level structure which is
uniquely determined by I). Conversely, a twisted stable graph of depth 1 with two
vertices, we can uniquely determine an admissible graph satisfying the condition of
Proposition 2.5.1 by putting all the poles on the component of level −1 on unstable
rational components of level 0 (see Lemma 2.3.19 and Example 2.5.3 below).

Definition 2.5.2. A simple bicolored graph is a twisted stable graphs of depth 1
with two vertices. We denote by SB(Z,P) the set of simple bicolored graphs. If
(Γ, I) is a simple bicolored graph, we denote by DΓ,I the corresponding divisor in
Hg(Z,P) (with the reduced structure) and by aΓ,I its class in Pic(Hg(Z − P))⊗Q.

The class i∗aΓI (where i is the closed immersion of p(AΓ, I) inMg,n+m) in the
moduli space of curves is simply given by:

ζΓ∗
(
[Hg0(Z0 − P0)], [Hg1(Z1 − P1)]

)
,

where g0 and g1 are the genera of the vertices of level 0 and −1 and the vectors Z0,
P0, Z1 and P1 are the vectors encoding the orders of zeros and poles at the marked
points and half-edes induced by Z,P and the twist I.

Example 2.5.3. We illustrate this correspondence between simple bicolored graphs
and boundary divisors. We consider g = 3, Z = (2,6) and P = (−2,−2) and the ad-
missible graph (on this example we take the twists equal to 1 on all edges). On this
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−2 −2 +2 −2 +2

0 1 +6 //oo −2 1 +6

1 1

FIGURE 4. Example of the correspondance between admissible
and stable graphs.

example, the class i∗aΓ,I in the moduli space of curves will be given by

ζΓ∗
(
[H1(+2,+0,+0,−2)], [H1(+6,−2,−2,−2)]

)
.

PROOF OF PROPOSITION 2.5.1. Let (Γ, I) be an amissible graph of depth at
most 1 with several stable components of level 0. Then the fiber of p over a generic
point of p(Ag,Z,P) is of dimension greater than one. That is why divisors of type 2
are not mapped to divisors while the map p restricted to D0 is indeed of degree one
onto its image.

Now we consider an admissible graph of depth 1 with one stable vertex of level
0. Then the graph satisfies condition (??) if and only it has one vertex of level −1.

Finally, we consider an admissible graph (Γ, I, l) of depth 1 and with no stable
vertex of level 0. The projectivized stratum PAΓ,I,l ⊂ PHg,n,P is empty. Indeed,
Z is complete for g and P thus the differential on each unstable component with a
marked pole of order p is given by dz/zp. Therefore AΓ,I,l is a substack of the zero
section of the cone Hg,n,P→Mg,n+m (see Section 2.2.3 for the description of the
zero section). �

2.5.2. Class defined by residue conditions. We recall that R is the vector
space of residues, i.e. the subspace of Cm defined by {(r1, . . . ,rm)/r1 + . . .+rm = 0}.
Let R⊂R be vector subspace of codimension 1. We define the following class in
the rational Picard group ofHg(Z − P):

δres
R = p∗(PAR

g,Z,P).

Notation 2.5.4. Let 1≤ i< j≤ n+m. We denote SB(Z,P)i (respectively SB(Z,P)i)
the set of simple bicolored graphs such that the leg corresponding to i is adja-
cent to the vertex of level −1 (respectively to the vertex of level 0). We denote
SB(Z,P) j

i = SB(Z,P)i∩SB(Z,P) j.
If R⊂R is a vector subspace, we denote by SB(Z,P)R the set simple bicolored

graphs satisfying: the space R contains the vector space R0 ⊂ R defined by the
linear conditions {ri = 0} for all 1≤ i≤m such that the leg of index n + i is at level
−1.

2.5.3. Classes defined by intersection. Let β be a tautological class in the
rational Picard group of Mg,n+m. The class β determines a class in Pic(Hg(Z −

P))⊗Q by taking i∗β where i is the closed immersion of ofHg(Z −P) intoMg,n+m.
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If β is either λ1,κ1 or a ψ-class then we will denote by the same letter its pull-back
to Pic(Hg(Z − P))⊗Q if the context is clear.

The last class that we will consider is the push-forward of the ξ-class that we
denote:

ξ = p∗(ξ · [PAg,Z,P]).

Theorem 2.5.5. The following relations holds in Pic(Hg(Z − P))⊗Q:

(1) for all 1≤ i≤ n:

ξ + (ki + 1)ψ1 =
∑

(Γ,I)∈SB(Z,P)i

m(I)aΓ,I;

(2) for all 1≤ i, j ≤ n:

(ki + 1)ψi − (k j + 1)ψ j =
∑

(Γ,I)∈SB(Z,P) j
i

m(I)aΓ,I −

∑
(Γ,I)∈SB(Z,P)i

j

m(I)aΓ,I;

(3) for all R⊂R vector subspace of codimension 1:

ξ = δres
R +

∑
(Γ,I)∈SB(Z,P)R

m(I)aΓ,I;

(4) if m = 0 then

λ1 +κµξ =
1

12
δ +

∑
(Γ,I)∈SB(Z,P)

2m(I,Γ)aΓ,I,

where δ is boundary divisor ofMg,n,

κµ =
1
12

n∑
i=1

ki(ki + 2)
ki + 1

and m(I,Γ) =
m(I)
12

(
−m(I) +

∑
i7→v1

ki(ki + 2)
ki + 1

)
.

the second sums goes over all legs adjacent to the vertex of level −1.

2.5.3.1. Relations (1) and (2) and Double Ramification cycles. The second
relation of Theorem 2.5.5 is a direct consequence of the first one: we write (ki +

1)ψi − (k j + 1)ψ j = (ξ + (ki + 1)ψi) − (ξ + (k j + 1)ψ j). However, we have chosed to
write this relation in this form for two reasons:

• first because it involves only classes defined directly in the moduli space
of curves;
• the second motivation is related to the Conjectures A and B. Indeed the

classes [Hg(µ)] (see Chapter 5 for definitions) are supposed to be gener-
alizations of the so-called Double Ramification cycles. In [8], the authors
proved several identities between intersection of ψ-classes with the Dou-
ble Ramification cycles. These relations are important for example to
construct the Double Ramification hierarchies. One consequence of the
relations proven in [8] is the existence a universal ψ-class over the Dou-
ble Ramification Cycles (independent of the choice of a marked point).
For strata of differentials the following corollary gives a candidate for this
ψ-class.
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Corollary 2.5.6. The following class in Pic(Hg(Z − P))⊗Q

(ki + 1) ψi −

∑
(Γ,I)∈SB(Z,P)i

m(I)aΓ,I

is independent of the choice of 1≤ i≤ n.

PROOF OF RELATION (1). It is a direct consequence of the induction formula
(see Theorem 2.3.41). We consider Zi, the vector obtained from Z by increasing
the i-th entry by 1 and R =R (no residue condition), then we get:

(ξ + (ki + 1)ψi) · [PAg,Z,P] = [PAg,Z j,P] +

∑
(Γ,I)∈Bic(g,Z,P)i

m(I) aΓ,I.

We remark that |Z j| − |P| > 2g − 2 thus [PAg,Z j,P] = 0. Now we apply the push
forward by p to this expression. In the sum of the right-hand side only the simple
bicolored graphs will contribute and we indeed get

ξ + (ki + 1)ψ1 =
∑

(Γ,I)∈SB(Z,P)i

m(I)aΓ,I

�

2.5.3.2. Relation (3). To prove the third relation, we need a generalization of
the induction formula:

Proposition 2.5.7. The following equality holds in H∗(PHg,n,P;Q)

[PAR
g,Z,P] = ξ[PAg,Z,P] −

∑
(Γ,I)∈Bic(g,Z,P)R

m(I)aΓ,I.

Remark 2.5.8. We could have stated this proposition in a larger generality (unsta-
ble disconnected base) but it will not be useful here.

PROOF. The proof is the same as the proof of Theorem 2.3.41. We consider
the line bundle O(1)'O(−1)∨ restricted to PAg,Z,P with its section

s :O(−1) → C
α 7→ R/R

defined as the composition of the residue mapO(−1)→R and the projectionR→
R/R. The vanishing locus of the section s is the union of PAR

g,Z,P and of the divisors
PAΓ,I for all (Γ, I) ∈ Bic(g,Z,P)R.

Now the vanishing order of s along PAR
g,Z,P is 1 because the residue map is

a submersion. The vanishing order of s along PAΓ,I is 1 because Lemma 2.3.42
remains valid if we replace the section si, j by the section s and the set of graphs
Div(g,Z,P,R)i j by the set of graphs Div(g,Z,P)R. �

PROOF OF RELATION (3). Relation (3) is a direct consequence of Proposi-
tion 2.5.7. It suffices to use apply the push-forward by the forgetful map p. �

2.5.3.3. Relation (4) and the work of Kontsevich and Zorich.
Let g ≥ 2. Let Z = (k1,k2, . . . ,kn) be a partition of 2g − 2. Let M(Z) be a

connected component of PHg(Z). There is a natural action of PSL(2,R) on Hg(Z)
and M(Z) is invariant under this action. Now we can consider the dynamic on
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M(Z) defined by the action of the diagonal (e−t ,et)t∈R. This allows to define a
constant associated to this action: the sum of the Lyapunov exponents. Another
invariant of the connected component cZ is the Siegel-Veech constant cZ (see [23]).
The two constants are related by the relation

(2.5.1) LZ = KZ + cZ,

where KZ = 1
12
∑ ki(ki+2)

ki+1 .
Kontsevich proved the existence of a closed real 2-form β onM(Z), such that,

LZ = −

∫
M(Z)β∧λ1∫
M(Z)β∧ ξ

.

Here λ1 and ξ are considered as elements in H2(PHg(Z),R). Relation (2.5.1)
comes from the following equality in H2(PHg(Z),R):

λ1 = KZ(−ξ) + δ,

and from:

cZ = −

∫
M(Z)β∧ δ∫
M(Z)β∧ ξ

.

The class δ lies in the boundary of PHg(Z). The fourth relation of Theorem 2.5.5
is the explicit computation of the boundary class in Pic(Hg(Z))⊗Q.

Remark 2.5.9. Here we compute the boundary terms in the compactification of
the strata inside the moduli space of curves. Another formula can be obtained in
the Hodge bundle. The two are very similar but we prefer to state the formula in
this form to complete our study of the Picard group ofHg(Z).

PROOF OF RELATION (4). We consider g > 0, P = 0 and Z = (k1, . . . ,kn) a
partition of 2g−2. Let Z′ be the vector equal to (k1, . . . ,kn,0). If π :Mg,n+1→Mg,n

is the forgetful map of the last marked point, then we have Ag,Z′ = π−1(Ag,Z). We
use the induction formula to obtain the relation:

(ξ +ψn+1)[PAg,Z′] = 0 +

∑
Bic(g,Z)n+1

m(I)aγ,I

We multiply this formula by ψn+1 to get

(2.5.2) ξψn+1[PAg,Z′] +ψ2
n+1[PAg,Z′] =

∑
Bic(g,Z′)n+1

m(I)ψn+1aΓ,I.

Now we apply (p∗) ◦ (π∗) to this formula (we forget the last point and then the
differential). We study each term separately.

Contribution of ξψn+1[PAg,Z′]. The classes ξ and [PAg,Z′] are pull back by π
thus

p∗
(
π∗(ψn+1ξ[PAg,Z′])

)
= p∗

(
π∗(ψn+1)ξ[PAg,Z]

)
= κ0 p∗(ξ[PAg,Z])

= (2g − 2 + n)ξ

by the projection formula.
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Contribution of ψ2
n+1[PAg,Z′]. Still by the projection formula we have:

p∗
(
π∗(ψ2

n+1[PAg,Z′])
)

= p∗
(
π∗(ψ2

n+1)[PAg,Z]
)

= κ1

= 12λ1 − δ +

n∑
i=1

ψi.

Now we use the first relation to write:
n∑

i=1

ψi = −

(
n∑

i=1

1
ki + 1

)
ξ +

n∑
i=1

 ∑
(Γ,I)∈BS(g,Z)i

m(I)
ki + 1

aΓ,I

 .
Contribution of

∑
Bic(g,Z′)n+1

m(I)ψn+1aΓ,I . Let (Γ, I) be a bicolored graph in
Bic(g,Z′)n+1. There are two possible configurations:

• the point n + 1 belongs to a rational components with 3 special points. In
which case ψn+1aΓ,I = 0;
• the point n + 1 is carried by general vertex of level −1 which is not con-

tracted after the forgetful map.
In the second case, we denote by (Γ′, I′) the twisted graph obtained after forgetting
the marked point. We get:

π∗(ψn+1aΓ,I) = (2gΓ′,I′,1 − 2 + nΓ′,I′,1)aΓ′,I′ ,

where gΓ,1 and nΓ,1 denote the genus and valency of the vertex of level −1. Thus

(p∗ ◦π∗)
∑

Bic(g,Z′)n+1

m(I)ψn+1aΓ,I =
∑

(Γ,I)∈BS(g,Z)

m(I)(2gΓ′,I′,1 − 2 + nΓ′,I′,1)aΓ,I.

We obtain Relation (4) by replacing all the terms in Equation (2.5.2) by their ex-
pressions in terms of simple bicolored graphs. �





CHAPTER 3

Prym-Tyurin classes and loci of degenerate differentials

In the present chapter, we study the rational Picard group of the projectivized
moduli space PM

(n)
g of abelian n-differentials on complex genus g stable curves.

We define n−1 natural classes in this Picard group that we call Prym-Tyurin classes.
We express these classes as linear combinations of boundary divisors and the di-
visor of n-differentials with a double zero. We give two different proofs of this
result, using two alternative approaches: an analytic approach that involves the
Bergman tau function and its vanishing divisor and an algebro-geometric approach
that involves cohomological computations on the universal curve.

The present chapter is mostly based on the article [56]

3.1. Prym-Tyurin classes

Remark 3.1.1. The article [56] has been written in cooperation with Dimitri Ko-
rotkin and Peter Zograf. Several pieces of notation in this chapter are different from
the chapter introduction. This is due to the fact that we have tried to stay coherent
in the indtroduction with the notation of the other chapters.

3.1.1. Moduli space of n-differentials. Let g and n be positive integers with
g ≥ 2. Let Mg (respectively Mg) be the moduli space of smooth (respectively
stable nodal) complex curves. Denote by D0 ⊂Mg the closure of the locus of
stable curves with one nonseparating node. Further, denote by Di ⊂Mg, 1 ≤ i ≤
[g/2], the closure of the locus of curves with a separating node and two irreducible
components of genera i and g − i. Finally, denote by π : Cg→Mg or π : Cg→Mg

the universal curve and by ω = ωCg/Mg
the relative dualizing sheaf.

Let
Ω(n)

g = R0π∗ω
⊗n

be the direct image of the nth tensor power of ω. Using the Riemann-Roch formula
and Serre’s duality, one can easily check that h1(C,ω⊗n

C ) = 0 if n≥ 2 and h1(C,ωC) =
1 for any stable curve C. Thus Ω(n)

g is a vector bundle for any n≥ 1. For n = 1 we
write Ωg instead of Ω(1)

g and call it the Hodge bundle. The Riemann-Roch formula
implies:

rkΩ(n)
g =

{
g if n = 1;

(2n − 1)(g − 1) otherwise.

We define the following elements in the rational Picard group ofMg:

• the Chern class λn ∈ Pic(Mg) of the determinant line bundle of Ω(n)
g ;

• the Poincaré dual classes δ0, . . . , δ[g/2] ∈ Pic(Mg) of the boundary divi-
sors D0,D1, . . . ,D[g/2] ⊂Mg.

For k = 1 we write λ instead of λ1 and call this class the Hodge class.

83
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Definition 3.1.2. The total space of the vector bundle Ω(n)
g is denoted by M

(n)
g and

is called the space of n-differentials.

The points of M(n)
g correspond to equivalence classes of pairs (C,w), where

C is a stable genus g algebraic curve, and w is an n-differential on C. We recall
that an n-differential w on C is a meromorphic n-differential on each irreducible
component of the normalization of C such that

• w can only have poles at the preimages of the nodes;
• these poles are of order at most n;
• at every node the n-residues of w at the poles satisfy

resp1(w) = (−1)nresp2(w)

where p1 and p2 are the two preimages of the node.

We denote by ν : M(n)
g →Mg the forgetful map and we will use the same

notation for its restriction ν : M(n)
g →Mg to the locus of smooth curves. We also

denote by ν̃ : PM
(n)
g →Mg the projectivized space of n-differentials.

In the present Chapter, we study the Picard group of PM
(n)
g . We will work over

rational numbers, so that Pic will always denote the rational Picard group.
By abuse of notation we will denote by λ, λn and δi both the elements of

Pic(Mg) and their pull-backs in Pic(PM(n)
g ). In addition, we introduce the first

Chern class ψ ∈ Pic(PM(n)
g ) of the tautological line bundle L→ PM

(n)
g .

The following lemma is standard (cf., e.g, [57], Lemma 1).

Lemma 3.1.3. The classes λ,ψ,δ0, . . . , δ[g/2] form a basis of Pic(PM(n)
g ).

The goal of the present Chapter is to define the Prym-Tyurin classes in Pic(PM(n)
g )

and express them in the above basis.

3.1.2. Stratification of PM(n)
g . The space of n-differentials is naturally strati-

fied according to the multiplicities of the differential’s zeros.
Let k = (k1, . . . ,km) be a partition of n(2g − 2). We denote by M(n)

g [k] ⊂M(n)
g

the locus of pairs (C,w) such that the n-differential w has m pairwise distinct zeros
of orders exactly ki. This locus is C∗-invariant, thus we can also define its projec-
tivization PM(n)

g [k] ⊂ PM(n)
g . The space PM(n)

g is the disjoint union of the strata
PM(n)

g [k] for all partitions k of n(2g − 2). The following properties of the strata
were proved in [59] and [72].

• Each stratum PM(n)
g [k] is smooth.

• If at least one ki is not divisible by n then either PM(n)
g [k] is empty or it

has pure dimension 2g − 3 + m.
• If all ki’s are divisible by n then PM(n)

g [k] has at least one irreducible com-
ponent of dimension 2g − 2 + m. A differential (C,w) lies in a component
like that if and only if w is the nth power of a holomorphic differential.
The stratum PM(n)

g [k] may also have irreducible components of dimen-
sion 2g − 3 + m composed of n-differentials that are not nth powers.

We denote by PM
(n)
g [k] the closure of PM(n)

g [k] in PM
(n)
g . In particular we have

PM
(n)
g [1] = PM

(n)
g , where 1 stands for the partition (1,1, . . . ,1).
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Definition 3.1.4. Let g,n≥ 2. The divisor of degenerate n-differentials is defined
as

Ddeg =

{
PM

(n)
g [2,1, . . . ,1], if (g,n) 6= (2,2),

PM
(n)
g [2,1,1] + 2 ·PM(n)

g [2,2], if g = n = 2.
We denote by δdeg the cohomology class that is Poincaré dual of Ddeg.

Remark 3.1.5. Heuristically, Ddeg is the divisor of n-differentials with a double
zero, and for (g,n) 6= (2,2) it is just the closure of PM(n)

g [2,1, . . . ,1] in PM
(n)
g . In

the case g = n = 2, however, Ddeg has a special component consisting of squares of
holomorphic differentials. This is because in genus 2 each quadratic differential
is invariant with respect to the hyperelliptic involution. The four simple zeroes of
w are pairwise equivalent under the hyperelliptic involution, and when two non-
equivalent zeroes coalesce, the other two ones also coalesce, giving a differential
with two double zeroes. Since every such differential has two square roots that
differ by a sign, the divisor PM

(n)
g [2,2] comes with a factor of 2. (Note that when

two equivalent zeroes coalesce, the differential in the limit has one double zero at
a Weierstrass point and two simple zeroes.)

3.1.3. First definition of Prym-Tyurin classes. Let (C,w) be a point in the
projectivized moduli space PM(n)

g [1]. One can define a canonical cyclic ramified
covering f : Ĉ →C of degree n, where

Ĉ = {(x,v)|x ∈C, v ∈ T ∗x C, vn = w}.

This covering is completely ramified over the zeros of w. The curve Ĉ is smooth of
genus ĝ = n2(g − 1) + 1. It comes with a canonical holomorphic differential v given
by v(x,v) = v. This differential v on Ĉ satisfies vn = f ∗w.

The action of Z/nZ on the covering is given by ρk : (x,v) 7→ (x,ρkv), where

ρ = e
2π
√

−1
n . We denote by σ : Ĉ → Ĉ the automorphism of Ĉ corresponding to k = 1.

Now consider the natural map

ν̂ : PM(n)
g [1]→Mĝ,

(C,w) 7→ Ĉ

(Ĉ remains the same when we multiply w by a non-zero constant). We consider the
pull-back of the Hodge bundle Ωĝ by the map ν̂. The automorphism σ induces an
endomorphism σ∗ of the vector bundle ν̂∗Ωĝ given by: ((C,w),u) 7→ ((C,w),σ∗u),
where u is an element of H0(Ĉ,ωĈ). The endomorphism σ∗ satisfies (σ∗)n = Id.
Hence we have a decomposition

(3.1.1) ν̂∗Ωĝ =
n−1⊕
k=0

Λ(k),

where Λ(k) is the eigenbundle of ν̂∗Ωĝ corresponding to the eigenvalue ρk = e
2π
√

−1k
n .

Remark 3.1.6. The space Λ(k) is a vector bundle because the dimension of the
fiber of Λ(k) is upper-continuous for all k and ν̂∗Ωĝ is a vector bundle thus the rank
of each Λ(k) is constant.
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Definition 3.1.7. The vector bundles Λ(k) are called the Prym-Tyurin vector bun-
dles. The Prym-Tyurin class λ(k)

PT is the first Chern class c1(Λ(k)) ∈ Pic(PM(n)
g [1]).

For n = 2 the study of vector bundles of this type was initiated by Prym [69]
and for n> 2 by A. N. Tyurin [7].

Remark 3.1.8. By abuse of notation we denote in the same way the determinant
line bundle λ(k)

PT = detΛ(k) and its class in the Picard group.

We will see in Section 3.5 that the map ν̂ : M(n)
g →Mĝ, used to define the

Prym-Tyurin vector bundles, admits no natural extension to PM
(n)
g . Nonetheless,

in the next section we extend the definition of the Prym-Tyurin class to PM
(n)
g by

a construction involving the space of admissible covers and an intermediate bigger
stack.

3.1.4. Admissible coverings and Prym-Tyurin bundles. Let N = 2n(g − 1)
be the degree of ω⊗n. We denote by Hurn

g the moduli space whose geometric points
are isomorphism classes of pairs ( f : Ĉ →C,σ) where:

• C and Ĉ are smooth curves;
• f is a cyclic ramified covering of degree n which is totally ramified over

N distinct points of C;
• σ is an automorphism of Ĉ that commutes with f .

We denote by Hurn
g the compactification of this space by admissible coverings

(see [40]). The space of admissible coverings has two forgetful maps (source and
target of the covering):

Hurn
g

target

zz

source

!!
Mg,N/SN Mĝ.

We consider the pull-back source∗Ωĝ of the Hodge bundle under the source map.
This vector bundle is endowed with the automorphism

σ∗ :
(

(Ĉ →C,σ),u
)
7→

(
(Ĉ →C,σ),σ∗u

)
.

Thus, as in (3.1.1), we have the decomposition

(3.1.2) source∗Ωĝ =
n−1⊕
k=0

Λ(k),

where Λ(k) is the eigenbundle corresponding to the eigenvalue ρk = e
2π
√

−1k
n .

In the previous section we have constructed an embedding i : PM(n)
g [1] ↪→Hurn

g

and, by construction, the pull-back i∗Λ(k) is, indeed, isomorphic to the Prym-Tyurin
bundle Λ(k) over PM(n)

g [1] as defined in the previous section.
We see that the Prym-Tyurin vector bundles, and therefore the Prym-Tyurin

classes, have a natural extension to the compactification of PM(n)
g [1] by admissible

covers. We would like, however, to extend the Prym-Tyurin classes to a different
compactification of PM(n)

g [1], namely, to PM
(n)
g . To do that we will construct a
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bigger space with a projection to both Hurn
g and PM

(n)
g and use the push-forward

of a pull-back.

3.1.5. Space of admissible differentials.

Definition 3.1.9. Let

I : M(n)
g [1] ↪→M

(n)
g ×Mg

Hurn
g

be the product of the two natural embeddings. The moduli space of admissible n
differentials X(g,n), is the Zariski closure of the image of I in M

(n)
g ×Hurn

g.

Remark 3.1.10. The space of admissible n-differentials is a compactification of
the stratum M(n)

g [1]. In [4], the authors introduced and described another compact-
ification, the incidence variety compactification. The incidence variety is obtained
by replacing the space Hurn

g by the spaceMg,N/SN in Definition 3.1.9. We denote
the incidence variety by X inc

g,n .
There is a birational and finite map from Xg,n to X inc

g,n , however this map is not
an isomorphism (see Example 4.3 of [4]). We will make use of X inc

g,n once in this
text (proof of Lemma 3.2.3).

The space X(g,n) has two natural morphisms: adm : X(g,n)→ Hurn
g and diff :

X(g,n)→ PM
(n)
g . We summarize the notation on the following diagram.⊕

Λ(k)

��

source∗ // Ωĝ

��
X(g,n) adm //

diff
��

Hurn
g

source //Mĝ

PM
(n)
g

By construction the forgetful map diff : X(g,n)→PM
(n)
g is birational and its restric-

tion to PM(n)
g [1] is an isomorphism onto its image. In general the space X(g,n) is

not normal; thus the push-forward of classes in the Picard group under diff is ill-
defined. However we will prove the following proposition in Section 3.2.

Proposition 3.1.11. There exist two smooth open-dense substacks j : V ↪→ X(g,n)
and j′ : U ↪→ PM

(n)
g fitting into the commutative diagram

V

��

j // X(g,n)

diff
��

U
j′
// PM

(n)
g

such that

• the map V →U is an isomorphism on the underlying coarse spaces;
• the complement of U is of codimension at least 2 in PM

(n)
g .
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The existence of U and V as above allows one to define the induced push-
forward diff∗ in the Picard groups. Indeed, the first property ensures that Pic(U)
and Pic(V ) are isomorphic. Similarly, the second propery ensures that j′ induces an
isomorphism between Pic(U) and Pic(PM(n)

g ). Thus, given an element in Pic(Xg,n),

one defines its push-forward to Pic(PM(n)
g ) by first taking its pull-back by j, then

the push-forward from V to U , and finally the push-forward by j′.

Definition 3.1.12. The Prym-Tyurin class λ(k)
PT on PM

(n)
g is defined by the formula

λ(k)
PT = diff∗c1(Λ(k)).

3.1.6. Statement of the results. The main result obtained in the present Chap-
ter is the expression for the Prym-Tyurin classes and the class δdeg of Defini-
tion 3.1.4 in the (λ,ψ,δi) basis.

Theorem 3.1.13. In the rational Picard group of PM
(n)
g we have

(3.1.3) δdeg = 12n(n + 1)λ− 2(g − 1)(2n + 1)ψ − n(n + 1)
[g/2]∑
i=0

δi;

(3.1.4) λ(n−k)
PT = (6k2

+ 6k + 1)λ−
g − 1

n
k(2k + 1)ψ −

1
2

k(k + 1)
[g/2]∑
i=0

δi + ck δdeg,

where

(3.1.5) ck =

{
2k−n

2n , if (n − 1)/2< k < n,

0, otherwise.
.

3.1.7. Strategy of the proof. Formula (3.1.3) of Theorem 3.1.13 is proved in
two distinct ways.

• In Section 3.3 we introduce the Bergman tau function on the moduli space
M(n)

g . We study its transformation property and its asymptotic behavior at
the boundary divisors Ddeg and Di, 0≤ i≤ [g/2]. We explicitly compute
the vanishing order of the Bergmann tau function along these divisors.
We use these results to express the divisor δdeg in the (λ,δi,ψ) basis of
the Picard group. This first proof is a further development of the ideas
introduced in [57] and [58].
• In Section 3.4 we give an alternative proof of Formula (3.1.3) based on

algebro-geometric computations as introduced in [71] and [84] in the
context of abelian differentials. We consider the moduli space of n-
differentials on genus g curves with one marked point. This space carries
a vector bundle of 2-jets of an n-differential at the marked point. The
Euler class of this vector bundle has a natural expression involving the
locus A2 of n-differentials with a double zero at the marked point. The
locus A2 pushes forward to Ddeg under the forgetful map that forgets the
marked point. This allows one to compute the cohomology class δdeg that
is Poincaré dual to the divisor class of Ddeg.

To prove Formulas (3.1.4) and (3.1.5) we combine (3.1.3) with the following
two facts.
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• First, the well-known Mumford formula [62] expressing the first Chern
class of the vector bundle of k-differentials onMg via the Hodge class:

(3.1.6) λk = (6k2
− 6k + 1)λ−

k(k − 1)
2

[g/2]∑
i=0

δi .

• Second, the fact that the morphism

(3.1.7)
Φk : Λ(k)⊗T⊗n−k → H0(C,ωn−k+1

C )
(q,vn−k) 7→ qvn−k

is actually an isomorphism of vector bundles outside Ddeg.

The second fact allows one to compute the rank of the Prym-Tyurin vector
bundle Λ(k):

(3.1.8) rkΛ(k) = rkΩ(n−k+1) = (2n − 2k + 1)(g − 1) , k = 1, . . . ,n − 1 .

It also implies that

(3.1.9) λ(k)
PT = λn−k+1 −

g − 1
n

(n − k)(2n − 2k + 1)ψ + const · δdeg .

In Section 3.5, we study the asymptotic of the determinant of Φk along the divisor
Ddeg to obtain Expressions (3.1.4) and (3.1.5).

Remark 3.1.14. Presence of an additional contribution proportional to δdeg in
(3.1.4) for k > (n − 1)/2 was first suggested by the third author in [82] using an
idea of [84].

Plan of the present Chapter. In Section 3.2 we prove Proposition 3.1.11 and
thus complete the definition of the Prym-Tyurin classes. In Sections 3.3 and 3.4
we prove Formula (3.1.3) of Theorem 3.1.13 using the two different approaches
described above. In Section 3.5 we discuss the relationship between Prym-Tyurin
vector bundles and vector bundles of k-differentials and derive a relationship be-
tween corresponding determinant line bundles. This allows us to express the Prym-
Tyurin classes in the (λ,δi,ψ) basis of the Picard group and complete the proof of
Theorem 3.1.13.

3.2. Space of admissible n-differentials

In this Section we justify the definition of the Prym-Tyurin classes by proving
the following extended version of Proposition 3.1.11.

Proposition 3.2.1. There exist two smooth open-dense substacks j : V ↪→ X(g,n)
and j′ : U ↪→ PM

(n)
g fitting into the commutative diagram

V

��

j // X(g,n)

diff
��

U
j′
// PM

(n)
g

such that
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• V and U contain the image of PM(n)
g [1] under the embeddings into X(g,n)

and PM
(n)
g ;

• the complement of U is of codimension at least 2 in PM
(n)
g ;

• the map V →U is an isomorphism on the underlying coarse spaces;
• there exists a line bundle T → V such that T is a sub-vector bundle of

Λ(1), T⊗n ' L and the restriction of T to PM(n)
g [1] coincides with the

sub-vector bundle of ν̂∗Ωĝ spanned by v.

3.2.1. Distinguished local coordinates on a cyclic covering. Consider a curve
C endowed with an n-differential w with simple zeros. Let f : Ĉ →C be the asso-
ciated covering and v = w1/n be the canonical abelian differential on Ĉ. Denote by
xi ∈ C, i = 1, . . . ,N = 2n(g − 1), the branch points of Ĉ → C, which coincide with
the zeros of w. Denote by x̂i the unique preimage of xi in Ĉ. Here we describe
a specific parametrization of the covering curve Ĉ near the branching points of
f : Ĉ →C. It is easy to see that all zeros of the holomorphic 1-form v are situated
at the ramification points x̂i and have multiplicity n. In other words,

(3.2.1) (v) = nx̂1 + · · ·+ nx̂N .

Introduce a local parameter ζi in a neighborhood of xi ∈C and a local parameter
ξi in a neighborhood of x̂i ∈ Ĉ such that

(3.2.2) w = ζi(dζi)n, ξi(x̂)n+1 =
∫ x̂

x̂i

v.

Both parameters are defined up to an (n+1)st root of unity and we make one choice
in such a way that

ζi =
(

n + 1
n

)n/(n+1)

ξn
i .

The local parameters ξi on Ĉ and ζi on C given by (3.2.2) are called distinguished.
Since f ∗v = ρv, the local parameter ξi(x) transforms under the action of f as

ξi( f (x)) = ρξi(x).

3.2.2. Extension of the Prym-Tyurin bundles to codimension 1 loci. By
construction, PM(n)

g [1] is an open dense substack of X(g,n). Thus diff : X(g,n)→
PM

(n)
g is birational and its restriction to PM(n)

g [1] is an isomorphism onto its image.

By abuse of notation we denote by Di, 0 ≤ i ≤ [g/2], the preimage in PM
(n)
g

of the boundary divisor Di ⊂Mg. Then the complement of PM(n)
g [1] in PM

(n)
g is

the union of the divisors Di and Ddeg.
For each of these divisors we define a dense open locus D̃⊂ D as follows.

• D̃0 is the locus of (C,w) such that the curve C has exactly one non-
separating node and the differential w has poles of order n at the node
and N simple zeros;
• D̃i for i ≥ 1 is the locus of (C,w) such that the curve C has exactly one

separating node and the differential w has poles of order n at the node and
N simple zeros.
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• D̃deg if (g,n) 6= (2,2) is the locus of (C,w) such that the curve C is a smooth
curve and the differential w has one zero of order exactly 2 and its other
zeros are simple;
• D̃deg if (g,n) = (2,2) is the disjoint union of the locus D̃deg(2,1,1) de-

scribed above and of the locus D̃deg(2,2) of pairs (C,w) where C is smooth
and w is a square of a holomorphic differential with simple zeros.

We define U as the union of PM(n)
g [1]∪ D̃deg ∪i D̃i ⊂ PM

(n)
g . We define V as

diff−1(U) ⊂ X(g,n). We will prove that U and V satisfy the properties of Proposi-
tion 3.2.1.

Property 1 is satisfied by construction.

Lemma 3.2.2 (Property 2). The stack U is an open substack of PM
(n)
g and its

complement is of codimension at least 2.

PROOF. The complement of U is a union of closed substacks: the strata of
curves with at least two nodes and the strata PM

(n)
g [k] for all k except (1, . . . ,1)

and (2,1 . . . ,1). Thus U is an open substack in PM
(n)
g and by dimension count its

complement is of codimension at least 2. �

Lemma 3.2.3 (Property 3). The restriction of diff : V →U induces an isomor-
phism on the underlying schemes. Moreover the map of stacks diff : V →U is of
degree one over U \Ddeg and of degree 1/2 over Ddeg.

PROOF. The underlying scheme of U is smooth and the map diff : V →U is
birational. Thus the map diff of schemes is an isomorphism if and only if it is finite.
We consider the incidence variety X inc

g,n compactification defined in Remark 3.1.10.

We have two birational map: diff′X inc
g,n → Xg,n and ε : X inc

g,n →M
(n)
g such that diff =

diff′ ◦ ε. The map diff′ is obtained by forgetting the admissible covering (but not
the markings) and ε is obtained by forgetting the markings. As we have already
stated in Remark 3.1.10, the map diff′ is finite because Hurg,n→Mg,N/SN is finite.
Therefore we need to check that the map ε restricted to ε−1(U) is finite.

The restriction ε : ε−1(U)→U is a bijection. Indeed, if (C,w) be a n-differential
in U \Ddeg, then the preimage of (C,w) under ε is the n-differential w with the
marked simple zeros. Now if (C,w) is a n-differential in D̃deg then the preimage
of (C,w) is the point (C′,w′,xi) where C′ is the curve with two components: one
component isomorphic to C and one rational component attached to C at the double
zero; the differential w′ is then given by w on the main component and vanishes
identically on the rational component; finally the marked points are the simple
zeros on the main component and two marked points on the rational component.

Therefore ε : ε−1(U)→U is finite and diff : V →U is birational and finite thus
an isomorphism of the underlying schemes. Moreover the restriction of the map ε
to U \Ddeg is obviously an isomorphism of stacks. The degree of diff along Ddeg
will be computed in the next paragraphs. �

Lemma 3.2.4 (Property 4). There exists a line bundle T →V such that T⊗n ' L,
T is a sub-vector bundle of Λ(1), and the restriction of T to PM(n)

g [1] coincides
with the sub-vector bundle of ν̂∗Ωĝ spanned by v.
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The proof requires a detailed analysis of the inverse morphism diff−1 : U →V
and is contained in the next two subsections.

3.2.2.1. Nodal curves. Let 0 ≤ i ≤ [g/2] and let (C,w) be a point in D̃i. The
n-fold covering associated to (C,w) is given by Ĉ = {(x,v) ∈ T ∗C /vn = w} and the
canonical differential v is still defined by v(x,v) = v. We can describe the topology
of Ĉ and the singularities (zeros and poles) of v:

• If i = 0, then the curve Ĉ is an irreducible curve with n self-intersections.
The differential v has zeros of order n at the marked points and poles of
order 1 at the nodes.
• If i ≥ 1 then the Ĉ has two irreducible components intersecting at n dis-

tinct nodes. The differential v has also zeros of order n at the marked
points and poles of 1 at the nodes.

The canonical differential v is well-defined on U \Ddeg, thus the line bundle T can
be extended to diff−1(U \Ddeg).

3.2.2.2. Degenerate differentials. Here we describe the local structure of the
stacks X(g,n) and M

(n)
g close to Ddeg. This allows us to explicit the isomorphism

of Lemma 3.2.3 and to describe the fiber of the canonical line bundle along D̃deg.
Let (C0,w0) be a point in D̃deg and let W be a neighborhood of (C0,w0) in Ddeg. We
will give a local parametrization of X(g,n) and M

(n)
g around the point (C0,w0).

• Parameters of M
(n)
g . A neighborhood of (C0,w0) is given by W×∆ where

∆ is a disk of C centered at zero. A point (u,a) in W ×∆ parametrizes
an n-differentials (C,w) such that

w = (ζ2
+ a)dζn.

where the parameter ζ of the curve C is uniquely determined by the choice
of a. The parameter a is a tranverse local parameter of Ddeg in M

(n)
g .

• Parameters of X(g,n). A neighborhood of (C0,w0) in Xg,n is parametrized
by W ×∆′/(Z/2Z) where ∆′ is a disk of C centered at zero. Indeed,
suppose first that the two colliding zeros of a differential (C,w) are labeled
x1 and x2. Let ζ be a local parameter of C such that the positions of x1 and
x2 are given by ζ1 and ζ2, respectively. To fix ζ uniquely we can define it
by exact relation:

w(x) = (ζ(x) − ζ1)(ζ(x) − ζ2)(dζ(x))n , x ∈C.

The parameter (ζ1 − ζ2)/{±1} is a local transverse parameter to Ddeg in
X(g,n) (See Lemma 3.3.6 for a proof).

With these two local parametrizations, the map diff : X(g,n)→M
(n)
g is given

by

W ×∆′/(Z/2Z) → W ×∆

(u, ζ1 − ζ2) 7→ (u, (ζ1 − ζ2)2).

This map is indeed an isomorphism of the underlying schemes. However it is of
degree 1/2 along Ddeg ⊂ X(g,n) once we consider the stack structures of X(g,n)
and M

(n)
g . This finishes the proof of Lemma 3.2.3.
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Finally we describe the extension of the canonical line bundle T to Ddeg. Let
(C,w) be a family of differentials with simple zeros which tends to (C0,w0) ∈
Ddeg ⊂ X(g,n). Once again we label the two coalescing zeros x1 and x2 and we
use the local parameter of the curve ζ with ζ(xi) = ζi and w(x) = (ζ(x) − ζ1)(ζ(x) −

ζ2)(dζ(x))n

As (C,w) tends to a pair (C0,w0) the zeros x1 and x2 tend to the double zero x0
of w0. The limit curve C0 is a nodal curve with two components: a Riemann sphere
C1 which gets naturally equipped with the meromorphic n-differential w1(ζ) given
by the formula

(3.2.3) w1(ζ) = (ζ − ζ1)(ζ − ζ2)(dζ)n , ζ ∈C1 ,

which is holomorphic outside of ζ =∞ and has two simple zeros at ζ1 and ζ2. The
Riemann surface C2 is equipped with the holomorphic n-differential w0. The nodal
point on C0 is formed by identifying the point ζ =∞ on C1 with the point x0 on C2.

The limit n-differential (C0,w0) determines a canonical n-sheeted covering
Ĉ0 → C0. The curve Ĉ0 consists of two components Ĉ1 and Ĉ2. The canonical
covering Ĉ1 of C1 is given by equation

(3.2.4) vn
1 = w1(ζ)

which, if we write v1 = ydζ, is the curve

(3.2.5) yn = (ζ − ζ1)(ζ − ζ2)

of genus ĝ1 = [(n−1)/2]. The canonical covering Ĉ2 of C2 is defined by the equation

(3.2.6) vn
2 = w2 ;

its genus equals ĝ2 = ĝ − [n/2]. Therefore, for odd n we have ĝ = ĝ1 + ĝ2 while for
even n we have ĝ = ĝ1 + ĝ2 + 1.

The difference between the case of even n and the case of odd n is due to the
fact that for odd n the coverings Ĉ1 and Ĉ2 intersect at only one nodal point while
for even n the nodal point on C0 has two pre-images on Ĉ0 i.e. for even n Ĉ1 and Ĉ2

intersect at two nodal points, x(1)
0 and x(2)

0 (see Figure 1 below).

FIGURE 1. Examples of degeneracy of canonical n-coverings (be-
fore colliding the zeros): on the left n = 4 and on the right n = 3.

With this description of the limit covering, we define the limit canonical dif-
ferential v0 as follows: it is given by v0 = v2 on the component Ĉ2 and vanishes
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identicaly on the rational component Ĉ1. It satisfies vn
0 = f ∗w0. Thus the canoni-

cal line bundle T can be extended to the open set V . This completes the proof of
Lemma 3.2.4.

3.3. Bergman tau function and Hodge class on PM
(n)
g

Tau functions play an important role in the theory of integrable systems pro-
viding canonical generators for commuting flows on the phase space [2]. In some
cases tau functions carry interesting algebro-geometric information, like the isomon-
odromic tau function of the Riemann-Hilbert problem that is relevant in the theory
of Frobenius manifolds [18].

The Bergman tau function introduced in [51] allowed to express the Hodge
class on the space of admissible covers of the projective line as an explicit linear
combination of the boundary divisors [52]. Then in [77] this result was proven by
pure algebro-geometric methods (namely, by means of the Grothendieck-Riemann-
Roch theorem) and later in [76] used to answer a question of Harris-Mumford [40]
about the classes of Hurwitz divisors in the moduli space Mg of stable complex
algebraic curves of even genus g.

A version of the Bergman tau function for the moduli space of holomorphic
abelian differentials on algebraic curves [52] allowed to get new relations in the ra-
tional Picard group of this space and was applied to the Kontsevich-Zorich theory
of Teichmüller flow [57], see also [23]. In [58], the Bergman tau function was used
to express the Prym class on the moduli space of holomorphic quadratic differen-
tials in terms of the standard generators. Here we continue with developing these
ideas further for the moduli space of holomorphic n-differentials.

3.3.1. Bergman tau function on strata of n-differentials. We begin with
defining the Bergman tau function for each stratum M(n)

g [k] where k = (k1, . . . ,km)
is a partition of N = 2n(g − 1). We introduce the following notation (see [29] for
precise definitions):

• v1, . . . ,vg – the normalized basis of holomorphic abelian differentials with
respect to a given Torelli marking (or cut system) on C;
• Ω – the corresponding period matrix;
• Θ(z,Ω) – the theta function associated with Ω;
• W (x) – the Wronskian determinant of differentials v1, . . . ,vg;
• C̃ – the fundamental polygon corresponding to the chosen cut system on

C;
• E(x,y) – the prime form on C×C;
• Ax – the Abel map corresponding to the initial point x;
• Kx – the vector of Riemann constants.

The distinguished local parameters on C in a neighborhood of the points xi

(zeroes of the n-differential w) are given by

(3.3.1) ζi(x) =
(∫ x

xi

v
)n/(ki+n)

where ki is the order of xi (in terms of these parameters w ∼ ζki
i (dζi)n near xi ∈C,

and v = w1/n ∼ ζki/n
i dζi near x̂i = f −1(xi) ∈ Ĉ). Then for the prime form E(x,y) on
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C×C we have

E(x,y) =
E(ζ(x), ζ(y))√
dζ(x)

√
dζ(y)

,

and we put

E(ζ,xk) = lim
y→xk

E(ζ(x), ζ(y))

√
dζk

dζ
(y),

E(xk,xl) = lim
x→xky→xl

E(ζ(x), ζ(y))

√
dζk

dζ
(x)

√
dζl

dζ
(y) .

We define two vectors Z, Z′ ∈ 1
nZ

g by the condition

(3.3.2)
1
n
Ax((w)) + 2Kx = ΩZ + Z′ .

Definition 3.3.1. The Bergman tau function on the space M(n)
g [k] is given by

τ (C,w) =(3.3.3)

c(x)2/3e−
π
6 〈ΩZ,Z〉− 2π

√
−1

3 〈Z,Kx〉
(

w(x)∏m
i=1 Eki(x,xi)

)(g−1)/3n∏
i< j

E(xi,x j)
kik j
6n2 ,

where

c(x) =
1

W (x)

( g∑
i=1

vi(x)
∂

∂zi

)g

θ(z;Ω)
∣∣∣
z=Kx

Proposition 3.3.2. Under the change of Torelli marking on C(
b̃
ã

)
=
(

A B
C D

)(
b
a

)
,

(
A B
C D

)
∈ Sp(2g,Z) ,

the tau function (3.3.3) transforms as follows:

(3.3.4)
τ (C,w,{ãi, b̃i})
τ (C,w,{ai,bi})

= εdet(CΩ + D)

where ε is a root of unity of degree 48d with d = l.c.m.(k1 + n, . . . ,km + n).

The proof can be obtained by using standard transformation properties of all
factors in (3.3.3) under the change of Torelli cut system on C (cf. [29]). The
root of unity appears due to an ambiguity in the definition of the distinguished
local parameters (3.3.1), which translates into an ambiguity in the definition of
E(x,xi) and E(xi,x j). The appearance of the term det(CΩ + D) can also be seen
from variational formulas for τ (C,w) discussed below, similarly to [52, 57, 58].

Proposition 3.3.3. The tau function has the following quasi-homogeneity prop-
erty:

(3.3.5) τ (C, δw) = δκτ (C,w)

with

(3.3.6) κ =
1

12n2

m∑
i=1

ki(ki + 2n)
ki + n

.
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This proposition follows from the explicit formula (3.3.3), but can also be de-
rived by applying the Riemann bilinear identity to variational formulas for τ as in
was done in [52] in the context of Hurwitz spaces.

Combining Propositions 3.3.2 and 3.3.3, we arrive at the following

Theorem 3.3.4. On the stratum M(n)
g [1] ⊂M

(n)
g of n-differentials with simple

zeroes, the power τ 48n(n+1) of the tau function τ = τ (C,w) is a nowhere vanishing
holomorphic section of the line bundle λ48n(n+1)⊗L−8(g−1)(2n+1) −→M(n)

g [1] .

In order to find the divisor of the section τ 48n(n+1) on M
(n)
g , we will compute

the asymptotics of τ at the boundary divisors Ddeg and D j, j = 0,1, . . . , [g/2]. For
that we need to study the tau function more carefully.

3.3.2. Homological coordinates and variational formulas for the tau func-
tion. The tau function τ (C,w) satisfies a system of linear differential equations on
the space M(n)

g similar to the tau functions on Hurwitz spaces, or spaces of abelian
or quadratic differentials [52, 51, 57, 58]. Here we assume that all zeros of w are
simple i.e. that all ki = 1 in (3.3.3).

The homology group H1(Ĉ,C) can be decomposed into the eigenspaces of the
automorphism σ∗:

H1(Ĉ,C) =
n−1⊕
i=0

Hk ,

where dimH0 = 2g and in the case of simple zeros the dimensions of Hk for k =
1, . . . ,n − 1 are independent of k and

(3.3.7) dimHk = (2n + 2)(g − 1) , k = 1, . . . ,n − 1

The dimensions (3.3.7) can be computed as the dimensions of the dual spaces Hk

in cohomology of Ĉ, whereHk is the subspace of H1(Ĉ,R) corresponding to eigen-
value ρk. The space Hk can be decomposed as Ω(k)⊕Ω

(n−k) (since ρk = ρn−k) and,
using (3.1.8), we get dimHk = (2n + 2)(g − 1).

For any two classes s1 ∈Hl and s2 ∈Hk we have s1◦s2 = 0 unless k+ l = n. The
spaces Hk and Hn−k are, therefore, dual to each other with respect to the standard
intersection pairing (the space H0 can be identified with H1(C), and, therefore, it
is self-dual). On the other hand, for any q ∈ Ω(k) and s ∈ Hl we have

∫
s q = 0

unless k = l. In particular, since v = w1/n ∈ Ω(1), it can have non-trivial periods
only over the cycles representing homology classes in H1. Actually, H1 can be
naturally identified with the tangent space to the moduli space M(n)

g . Choosing a
basis {si}(2n+2)(g−1)

i=1 inH1 we introduce homological coordinates Pi on M(n)
g by the

formula

(3.3.8) Pi =
∫

si

v

(see also Corollary 2.3 of [4]).
Choose a Torelli marking on C and define the associated canonical bimero-

morphic differential B(x,y) = dxdy logE(x,y) on C (here E(x,y) is the prime form).
The bidifferential B is symmetric with a second order pole with biresidue 1 on the
diagonal x = y and vanishing a-periods with respect to both arguments.
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The bidifferential B(x,y) has the following local behaviour near the diagonal
x = y:

(3.3.9) B(x,y) =
(

1
(ζ(x) − ζ(y))2 +

1
6

SB(ζ(x)) + . . .

)
dζ(x)dζ(y ;

here ζ(x) is a local parameter, and SB(x) is the so-called Bergman projective con-
nection.

To study the tau function on M(n)
g we will need some variational formulas for

B(x,y). For a basis {si}(2n+2)(g−1)
i=1 in H1 consider the dual basis {s∗j}

(2n+2)(g−1)
j=1 in

Hn−1, so that s∗j ◦ si = δi j.
Consider a fundamental polygon C̃ of C (that is, dissect C along the cuts rep-

resenting the Torelli marking). Choose a system Γ of non-intersecting cuts that
lie within C̃ and connect the first zero x1 with other zeros of w. Pick a connected
component of f −1(C̃ \Γ) ⊂ Ĉ and identify it with C̃ \Γ. On C̃ \Γ introduce the
coordinate

(3.3.10) z(x) =
∫ x

x1

v ,

where the path connecting x with x1 entirely lies in C̃ \Γ.

Theorem 3.3.5. The following variational formula holds for i = 1, . . . , (2n + 2)(g −

1):

(3.3.11)
∂

∂Pi
B(z(x),z(y)) =

1
2π
√

−1n

∫
s∗i

B(z(x), ·)B(·,z(y))
v

Formula (3.3.11) can be derived from the variational formulas for the stratum
Hĝ(n, . . . ,n) of the moduli space of holomorphic 1-differentials of genus ĝ = n2(g−

1) + 1, see Theorem 3 of [52], in a way similar to Lemma 5 of [58] and Proposition
3.2 of [6].

Consider the differential operator Sv = v′′
v −

3
2

(
v′
v

)2
(that is, the Schwarzian

derivative of the abelian integral
∫ x v with respect to the coordinate z on C). For

the holomorphic 1-differential v, Sv is a meromorphic projective connection on C,
so that the difference SB − Sv is a meromorphic quadratic differential.

The tau function τ = τ (C,w) satisfies the following system of differential equa-
tions with respect to the homological coordinates Pi on PM(n)

g :

(3.3.12)
d

dPi
logτ = −

1
12π
√

−1n

∫
s∗i

SB − Sv

v

(notice that the differential (SB − Sv)/v gets multiplied by ρ−1 under the action of
f ∗; thus its integral over s∗i ∈Hn−1 is non-trivial). The compatibility of the system
(3.3.12) follows from the symmetry of the expression

∂

∂P j

∫
s∗i

SB − Sv

v
=

1
12π
√

−1n

∫
s∗i

∫
s∗j

B(z(x),z(y))B(z(y),z(x))
v(z(x))v(z(y))

under the interchange of i and j.
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3.3.3. Asymptotics of tau function near the boundary of M
(n)
g . Here we

compute the asymptotics of τ near the boundary M
(n)
g \M(n)

g [1] of M(n)
g that consist

of the following divisors:

• Ddeg, the divisor of n-differentials with multiple zeroes,
• D0, the divisor of n-differentials on irreducible nodal curves, and
• D j, j = 1, . . . , [g/2], the divisors of n-differentials on reducible nodal

curves.

3.3.3.1. Coalescing simple zeros of w: divisor Ddeg.

Lemma 3.3.6. Let x1 and x2 be two zeros of w coalescing at Ddeg. Then a transver-

sal local coordinate on M
(n)
g in a tubular neighbourhood of Ddeg is given by

(3.3.13) tdeg =
(∫ x2

x1

v
)2n/(n+2)

.

PROOF. It is parallel to the proof of Lemma 8 of [58]. Denote by ζ a local
coordinate in a small disk U containing the coalescing zeros x1,2 and no other
zeros. Then we can write in U

(3.3.14) w(ζ) = (ζ − ζ(x1))(ζ − ζ(x2))(dζ)n ,

so that∫ x2

x1

v =
∫ ζ(x2)

ζ(x1)
((ζ − ζ(x1))(ζ − ζ(x2)))1/n dζ = const · (ζ(x1) − ζ(x2))(n+2)/n .

and the parameter tdeg defined by (3.3.13) looks like Since (ζ(x1) − ζ(x2))2 is inde-
pendent of labeling of zeroes, tdeg is a coordinate transversal to Ddeg. �

Lemma 3.3.7. The tau function τ (C,w) has the following asymptotics near Ddeg:

(3.3.15) τ (C,w) = t
1

12n(n+1)
deg τ (C0,w0)(1 + o(1))

where (C0,w0) ∈ Ddeg.

PROOF. The asymptotics (3.3.15) can be derived by computing the asymp-
totics of all factors in the explicit formula (3.3.3). Alternatively, using the system
of equations (3.3.12) we see that in the limit tdeg → 0 the tau function τ (C,w)
behaves like t p

degτ (C0,w0) for some power p, where w0 is a differential with one
zero of order two and all other zeroes simple. To find p explicitly, we look at
the transformation properties of τ , τ0 and tdeg under the rescaling w 7→ δw. The
homogeneity degrees κ of τ and κ0 of τ0 are given by the formula (3.3.6), so that

κ−κ0 =
1

6n(n + 1)(n + 2)
On the other hand, the local parameter tdeg has homogeneity degree 2/(n+2), which
gives p = 1

12n(n+1) . �

3.3.3.2. Asymptotics of τ near D0. Take two loops a and b on C intersect-
ing transversally at one point; their homology class we will also denote by a, b ∈
H1(C,Z). Let us pinch a to a point, then C degenerates to a nodal curve C0 that
we represent by a smooth curve of genus g − 1 with two points (say, x0 and y0)
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identified (we assume that all zeros of w remain far from the node). The holomor-
phic n-differential w on C degenerates to a meromorphic n-differential w0 on C0
with poles of degree n at x0 and y0 such that the corresponding n-residues differ by
(−1)n.

The canonical covering Ĉ of C degenerates to a nodal curve Ĉ0 with n nodes
that can be thought of as n pairs of points x(m)

0 = σm(x0) and y(m)
0 = σm(y0), m =

0, . . . ,n − 1, on the normalization of Ĉ0 that are pairwise identified (here σ is the
covering automorphism of Ĉ0). The differential v on Ĉ degenerates to a meromor-
phic differential v0 on Ĉ0 with simple poles at the preimages of nodal points with
residues at x(m)

0 and y(m)
0 that differ by a sign.

Choose one of n simple loops on in the preimage f −1(a) ⊂ Ĉ. Let us assume
that this loop pinches to the first node on Ĉ0.

Consider the classes α,β ∈H1 given by

(3.3.16) α =
n−1∑
m=0

ρ−mσ−m
∗ a , β =

n−1∑
m=0

ρ−mσ−m
∗ b

(where σ is the covering automorphism of Ĉ), and introduce the homological coor-
dinates Pα =

∫
α v and Pβ =

∫
β v associated with α and β.

A local coordinate on M(n)
g transversal to D0 in a tubular neighborhood can be

chosen as
t0 = e2πiPβ/Pα

(notice that Im(Pβ/Pα)> 0 near D0).
We may assume that Pα remains constant under the degeneration of C to C0.

Let ωx,y be the abelian differential of the 3rd kind on Ĉ0 with simple poles at points x
and y of residues +1 and −1 respectively, normalized with respect to some canonical
basis (ai,bi) in H1(Ĉ0,Z). Since v0 ∈H1, it can be written as

v0 =
Pα

2π
√

−1

n−1∑
j=0

ρmωσm(x0),σm(y0) + holomorphic terms .

In the limit t0→ 0 the bidifferential B(x,y) on C×C tends to the meromorphic
bidifferential B0(x,y) on C0×C0 with the same properties.

To find the asymptotics of the tau fuction τ as t0→ 0 (i.e. Pβ →∞), consider
the equation

(3.3.17)
∂ logτ
∂Pβ

= −
1

12π
√

−1n

∫
β∗

SB − Sv

v
−→
t0→0

−
1
6n

resx0

SB0 − Sv0

v0
,

where β∗ = 1
n

∑n−1
m=0 ρ

mσm
∗ a ∈Hn−1 is the class dual to β ∈H1.

To compute the residue, choose a local coordinate ζ near x0 on C0 such that
SB0 = 0. Then we have v0 = Pα

2π
√

−1n
dζ
ζ + O(1) and{∫

v0, ζ

}
=
(

v′0
v0

)′
−

1
2

(
v′0
v0

)2

=
1

2ζ2 + O(1)
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as t0→ 0, so that Sv0/v0 = π
√

−1n
Pα

dζ
ζ + O(1) . Therefore, (3.3.17) implies

(3.3.18)
∂ logτ
∂Pβ

∣∣∣
t0=0

=
π
√

−1
6Pα

and τ ∼ eπ
√

−1Pβ/6Pα , i.e.

(3.3.19) τ = t1/12
0 (const + o(1))

as t→ 0.
3.3.3.3. Asymptotics of τ near D j. Contracting a homologically trivial simple

loop γ on C we get a reducible nodal curve C0 that splits into two irreducible
components C1 and C2 of genera g1 = j and g2 = g − j respectively, j = 1, . . . , [g/2].
Denote by x0 ∈ C1 and y0 ∈ C2 the intersection point of C1 and C2 (the node of
C0). The holomorphic n-differential w on C degenerates to a pair of meromorphic
n-differentials w1 and w2 on C1 and C2 respectively, with poles of order n at x0 ∈C1
and y0 ∈C2 whose n-residues differ by (−1)n (we assume that under generation the
zeroes of w stay away from the vanishing cycle γ).

Denote by fi : Ĉi→Ci the canonical n-fold covering (i = 1,2), and let x(1)
0 , . . . ,x(n−1)

0
(resp. y(1)

0 , . . . ,y(n−1)
0 ) denote the preimages of the node in Ĉ1 (resp. Ĉ2) that are

cyclically ordered relative to the covering maps σi : Ĉi→ Ĉi. The canonical cover
Ĉ0 of the nodal curve C0 is obtained from Ĉ1 and Ĉ2 by identifying x(m)

0 with y(m)
0

for each m = 0, . . . ,n − 1.
Define the 1-form vi on Ĉi by vn

i = f ∗i wi, (i = 1,2). The (meromorphic) 1-forms
v1 and v2 have first order poles at the n preimages of the node whose residues differ
by a sign, i. e. res|x(m)

0
v1 = −res|y(m)

0
v2. Moreover, applying m times the covering map

σ0, we see that res|x(m)
0

v1 = ρ−mres|x(0)
0

v1 (resp. res|y(m)
0

v2 = ρ−mres|y(0)
0

v2).

The preimage f −1(γ) ⊂ Ĉ of the loop γ on C is the disjoint union of n loops
γm, m = 0, . . . ,n−1 (we enumerate them in such a way that γm+1 = σ(γm), assuming
that γn = γ0). Note that the union of γm, m = 0, . . . ,n − 1, is homologically trivial
on Ĉ. Consider also a simple loop η0 on Ĉ such that γ0 ◦ η0 = 1, γ1 ◦ η0 = −1, and
γk ◦η0 = 0 for k = 2, . . . ,n − 1, where ◦ denotes the intersection pairing of 1-cycles
on Ĉ.

Introduce the loops ηm = σm(η0), m = 1, . . . ,n − 1, and consider the cycles

(3.3.20) α =
n−1∑
m=1

(ρ−m
− 1)γm , β =

1
ρ− 1

n−1∑
m=1

(1 −ρ−m)ηm

(for homology classes in H1(Ĉ,Z) represented by γm and ηm we use the same nota-
tion); clearly, α,β ∈H1. The class β∗ ∈Hn−1 dual to β is given by

(3.3.21) α̃ =
1
n

n−1∑
m=1

(ρm
− 1)γm .

Introduce the following homological coordinates:

(3.3.22) Pα =
∫
α

v = n
∫
γ0

v , Pβ =
∫
β

v =
n

1 −ρ

∫
η0

v .
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Without loss of generality we may assume that while C degenerates to C0 all ho-
mological coordinates except Pβ remain finite.

Lemma 3.3.8. A local parameter tranversal to D j ⊂M
(n)
g can be chosen as

(3.3.23) t j = e2π
√

−1Pβ/Pα .

PROOF. We can realize the loops γm and ηm by simple closed geodesics in
hyperbolic metric on Ĉ. Denote by Ti the maximal hyperbolic cylinder with waist
γi (the collar of γi). Put η(i)

0 = η0∩Ti, i = 0,1. Then 1
nPβ = 1

1−ρ

∫
η0

v∼
∫
η(0)

0
v when

C approaches C0 is the “complex heght" of the cylinder T0 while 1
nPα =

∫
γ0

v is
its “complex waist". Therefore, (3.3.23) gives a local coordinate transversal to
D j. �

To find the asymptotics of τ when t j→ 0, consider

∂ logτ
∂Pβ

= −
1

12π
√

−1n

∫
β∗

SB − Sv

v
(3.3.24)

= −
1

12π
√

−1n

∫
γ0

SB − Sv

v
−→ −

1
6n

res|x(0)
0

SB0 − Sv0

v0
.

Pick a coordinate ζ near x(0)
0 such that SB0 = 0, then v0 = Pα

2π
√

−1n
dζ
ζ + O(1) and

Sv0
v0

= π
√

−1n
Pα

dζ
ζ + O(1) as t j→ 0. Therefore, (3.3.24) implies

∂ logτ
∂Pβ

∣∣∣
t j=0

=
π
√

−1
6Pα

.

Thus, τ ∼ eπ
√

−1Pβ/6Pα as t j→ 0, and

(3.3.25) τ = t1/12
j (const + o(1)) .

3.3.4. Hodge class on PM
(n)
g . A straightforward combination of Theorem

3.3.4 with asymptotic formulas (3.3.15), (3.3.19) and (3.3.25) yields

Theorem 3.3.9. (Formula (3.1.3) of Theorem 3.1.13) The Hodge class λ on M
(n)
g

is a linear combination of the tautological class ψ and the classes of boundary
divisors Ddeg and D j, j = 0,1, . . . , [g/2], as follows:

(3.3.26) λ =
(g − 1)(2n + 1)

6n(n + 1)
ψ +

1
12n(n + 1)

δdeg +
1

12

[g/2]∑
j=0

δ j .

3.4. An alternative computation of δdeg

An alternative proof of Theorem 3.3.9 was given in [82] using an approach
proposed by D. Zvonkine [84] and developed in [71].

Let g,n ≥ 2. In order to compute the class δdeg in Pic(PM(n)
g ) we begin with

marking one point on C, i.e. we study the space PM
(n)
g,1. In PM

(n)
g,1 we define the

loci

Zi = {(C,x1,w) |C is smooth and x1 is a zero of w of order at least i}.
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We denote by Zi the closure of Zi. This is a closed substack of PM
(n)
g,1 of pure

codimension i for 1 ≤ i < N = (2g − 2)n, while for i = N it has two components of
codimensions N − 1 and N respectively, cf Section 3.1.2.

Let π : PM
(n)
g,1 → PM

(n)
g be the forgetful map of the marked point. Then it is

easy to see that the image of Z2 under π is the divisor Ddeg. This statement takes
into account the multiplicities of the components of Ddeg. Indeed, if (g,n) 6= (2,2)
then the restriction of π to Z2 is of degree 1 and if (g,n) = (2,2) then π is of degree
one onto PM

(n)
g (2,1,1) and two onto PM

(n)
g (2,2). Therefore π∗[Z2] = δdeg. Thus to

find an expression of δdeg it suffices to compute the class [Z2] ∈ A2(PM(n)
g,1).

Computation of [Z2]. Let L1→Mg,1 be the line bundle whose fiber is the cotan-
gent line to the curve C at x1, and put ψ1 = c1(L1). Consider the following line
bundle over PM

(n)
g,1:

O(1)⊗L⊗n
1 ' Hom

(
L,L⊗n

1

)
.

This line bundle has a natural section

s1 : (C,w) 7→ w(x1).

In other words, s1 is the evaluation of w at the marked point. The class of the
vanishing locus of s1 is given by the first Chern class of the line bundle:

{s1 = 0} = c1
(
O(1)⊗L⊗n

1

)
= −ψ + nψ1.

It is easy to see that Z1 is a component of the vanishing locus {s1 = 0}. In the next
section we will show that the vanishing locus has no other components and that the
vanishing order of s1 along Z1 is equal to 1. Thus we have [Z1] = −ψ + nψ1.

Now we restrict to Z1 and study the line bundleO(1)⊗L⊗n+1
1 . This line bundle

has a natural section
s2 : (C,w) 7→ w′(x1).

In other words, assuming that w vanishes at x1, the section s2 assigns to w its
derivative at x1. It is easy to see that Z2 is a component of the vanishing locus
{s2 = 0}. In the next section we will show that the vanishing locus has no other
components and that the vanishing order of s2 along Z2 is equal to 1. Thus we have

[Z2] = (−ψ + (n + 1)ψ1)[Z1] = (−ψ + nψ1)(−ψ + (n + 1)ψ1).

Recall that δdeg is the push-forward by π of this expression. To compute this
push-forward we use

• ψ is a pull-back under π;
• π∗ψ1 = 2g − 2;
• π∗ψ2

1 = κ1 = 12λ1 −
∑[g/2]

i=1 δi.
The last equality is the well-known Mumford’s formula.

Applying these equalities we get

δdeg = π∗ ((−ψ + nψ1)(−ψ + (n + 1)ψ1))

= n(n + 1)π∗(ψ2
1) − (2n + 1)π∗(ψ1)ψ

= 12n(n + 1)λ1 − n(n + 1)
[g/2]∑
i=1

δi − (2n + 1)(2g − 2)ψ.
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This coincides with the expression of Theorem 3.3.9.

In order to complete the proof of Theorem 3.3.9, it remains to prove that the
vanishing locus of s1 (respectively s2) is exactly Z1 (respectively Z2) and that the
vanishing order of s1 and s2 is 1.
Vanishing loci of s1 and s2. Let W be an irreducible divisor of PM

(n)
g,1 in the

vanishing locus of s1. Let k be the number of nodes of the curve represented by a
generic point of W . The vanishing locus of s1 is of codimension 1 in PM

(n)
g,1 thus

k = 0 or 1. We investigate both cases.

• Let k = 0. Then a dense subset of W is contained in Z1 and thus W is a
component of Z1.
• Let k = 1. Then the divisor W is contained in ν̃−1(D) for some irreducible

boundary divisor D of the moduli space of stable curves with one marked
point (we recall that ν̃ : PM

(n)
g,1→Mg,1 is the forgetful map). Since the D

is irreducible, and ν̃ is the projectivization of a vector bundle, we neces-
sarily have W = ν̃−1(D). However there exists an n-differential in ν̃−1(D)
which is not identically zero on the component of marked point. There-
fore, there exists a point in ν̃−1(D) which is not in the vanishing locus of
s1. Thus the case k = 1 does not occur.

To study the vanishing locus of s2 we follow the same strategy. First we can
check by dimension count that no irreducible component of Z1 is in the zero locus
of s2. Now let W be an irreducible divisor in the vanishing locus of s2 and let k be
the number of nodes of the curve represented by a generic point of W . We have
now 3 cases to study: k = 0,1 and 2.

• Let k = 0. Then a dense subset of W is contained in Z2 and thus W is a
component of Z2.
• Let k = 2. Then W = ν̃−1(D) where D is a codimension 2 boundary stratum

ofMg,1. As above ν̃−1(D) is not contained in the vanishing locus of s2.
Thus the case k = 2 cannot occur.
• Let k = 1. Then W is a co-dimension 1 locus inside ν̃−1(D) for a boundary

divisor D ofMg,1. The generic curve has two components of genera g′

and g − g′ with 1≤ g′ ≤ g − 1. We assume that the marked point is carried
by the component of genus g′. The rank of the bundle of n-differentials
with a pole of order at most n at the node is n(2g′ − 2 + 1) > 1. Thus
the divisor D is not contained in the locus of differentials that vanish
identically on this component. Thus D is not contained in the vanishing
locus of s2.

We conclude that {si = 0} = Zi for i = 1 and 2.

Vanishing order of s1. Let y0 = (C0,w0,x0) be a point in Z1. We recall that
PM

(n)
g,1 → PM

(n)
g is isomorphic the universal curve. Thus a neighborhood of y0

in Z1 is given by U ×∆ where U is a neighborhood of (C0,w0) in PM(n)
g [1] and

ζ ∈∆ is the distinguished parameter around x0 in C0 (cf Section 3.2.1). Let (C,w,x)
be an n-differential in U ×∆. In coordinates (u, ζ) ∈U ×∆, the differential w is
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given by w = ζdζn, the locus Z1 is {ζ = 0} and the section s1 is given by s1(u, ζ) = ζ.
Therefore the vanishing order of s1 along Z1 is 1.

Vanishing order of s2. Let y0 = (C0,w0,x0) be a point in Z2. A neighborhood of y0

in PM
(n)
g,1 is now given by U ×∆×∆′ where U is a neighborhood of y0 in Z2 and

∆ and ∆′ are disks of the complex plane centered at 0 and parametrized by ζ and
a such that:

w = (ζ2
+ a)dζn.

With the parameters (u, ζ,a) ∈U ×∆×∆′, the locus Z1 is defined by ζ2 + a = 0.
Moreover with these parameters, the section s2 is given by s2(u, ζ,a) = a. Thus the
vanishing order of s2 along Z2 is again 1.

3.5. Prym-Tyurin differentials on Ĉ and holomorphic n-differentials on C

Here we relate Prym-Tyurin vector bundles to vector bundles of holomorphic
k-differentials on the base Riemann surface C. We use this relation to finish the
proof of Theorem 3.1.13.

We also prove that the Prym-Tyurin bundle is not a pullback from PM
(n)
g in

general.

3.5.1. Prym-Tyurin bundles and n-differentials. Consider two vector bun-
dles Λ(k) and ν̃∗Ω(n−k+1)

g over X(g,n). The fiber of Λ(k) is the kth eigenspace in the
space of abelian differentials on Ĉ. The fiber of Ωn−k+1 is the space of (n − k + 1)-
differentials on C. There are natural morphisms:

(3.5.1)
Φ0 : Λ(0) → ν̃∗Ωg ,
Φk : Λ(k)⊗T⊗(n−k) → ν̃∗Ω(n−k+1)

g for 1≤ k ≤ n.

Indeed, let (C,w) be a point in U \Ddeg and let q be a differential in the fiber of Λ(k).
The n − k + 1 differential qvn−k is invariant under the action of the automorphism
group of the covering, thus qvn−k is the pull-back of n − k + 1 differential on C. For
k = 0 the differential q is already invariant under the action of the automorphism
group of the covering, so there is no need to multiply it by a power of v.

Lemma 3.5.1. The map Φk is an isomorphism over V \Ddeg.

PROOF. The maps Φk for 0≤ k≤ n − 1 are injective because v does not vanish
identically on any component of the nodal curve Ĉ. They are bijective because the
sum of ranks of the Prym-Tyurin bundles Λ(k) for 0≤ k ≤ n − 1 is equal to the sum
of ranks of the vector bundles Ωn−k+1. Indeed,

n−1∑
k=0

rkΛ(k) = rkΩĝ = n2(g − 1) + 1

and

rkΩg +

n−1∑
k=1

rkΩ(n−k+1)
g = g +

n−1∑
k=1

(2n − 2k + 1)(g − 1) = n2(g − 1) + 1.

�
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Corollary 3.5.2. The rank of the Prym-Tyurin bundle is g for k = 0 and (2n − 2k +

1)(g − 1) for 1≤ k ≤ n − 1.

Corollary 3.5.3. In Pic(PM(n)
g \Ddeg) we have

(3.5.2) λ(k)
PT = λn−k+1 −

g − 1
n

(n − k)(2n − 2k + 1)ψ

for 1≤ k ≤ n − 1.

PROOF. On the locus where Φk is an isomorphism we have

λ(k)
PT = c1(Λ(k))

= c1(ν̃∗Ωk⊗T⊗−(n−k))

= λn−k+1 − (g − 1)(n − k)(2n − 2k + 1)c1(T )

= λn−k+1 −
g − 1

n
(n − k)(2n − 2k + 1)ψ,

where the last equality is due to T⊗n = L.
The locus where Φk is an isomorphism coincides with PM

(n)
g \Ddeg up to codi-

mension 2 substacks that are immaterial for the first Chern class computations. �

To study the extension of the formula (3.5.2) to PM
(n)
g we need to study the

behavior of Φk along the boundary divisor Ddeg. The determinant of Φk is a global
section of

det(Λ(k)⊗T n−k)−1⊗det(ν̃∗Ω(n−k+1)
g ).

Thus the difference between λ(k)
PT and λn−k+1 −

g−1
n (n−k)(2n−2k+1)ψ is an effective

divisor defined as the vanishing locus of detΦk.
In Section 3.2.2, we have described a parametrization of the cyclic coverings

along Ddeg. We use here this parametrization to prove the following Lemma.

Lemma 3.5.4. If [(n − 1)/2] + 1 ≤ k ≤ n − 1 or k = 0, then the morphism Φk is
an isomorphism of vector bundles over V ⊂ X(g,n). Otherwise, det(Φk) vanishes
along Ddeg with order (1 −

2k
n ).

This lemma implies the following

Corollary 3.5.5. The following relations between Prym-Tyurin class λ(k)
PT , the class

ψ = c1(L) and the pullback of class λn−k+1 fromMg to PM
(n)
g holds:

λ(k)
PT = λn−k+1 −

g − 1
n

(n − k)(2n − 2k + 1)ψ +

(
1
2

−
k
n

)
δdeg ,(3.5.3)

1≤ k ≤ [(n − 1)/2] ,

λ(k)
PT = λn−k+1 −

g − 1
n

(n − k)(2n − 2k + 1)ψ ,(3.5.4)

[(n − 1)/2] + 1≤ k ≤ n − 1 .

This corollary together with Theorem 3.3.9 and Formula (3.1.6) completes the
proof of Theorem 3.1.13.



106 3. PRYM-TYURIN CLASSES AND LOCI OF DEGENERATE DIFFERENTIALS

Remark 3.5.6. Note the difference of a factor 2 between the vanishing order of
detΦk and the contribution of δdeg in λ(k)

PT . This is due to the fact that V →U is of
degree 1/2 along Ddeg.

The proof of Lemma 3.5.4 will occupy the two following sections. We consider
separately the cases of even n and odd n.

3.5.2. Odd n = 2m + 1.
3.5.2.1. Kernel and cokernel of Φk. Let (C0,w0) be a point in Ddeg and f :

Ĉ0→C0 be the associated admissible covering. We recall that Ĉ0 is a curve with two
components intersecting in one point. The two components Ĉ1 and Ĉ2 are of genera
ĝ1 = m and ĝ2 = ĝ−m (see Section 3.2.1). We have denoted by w1 the meromorphic
n-differential on C1 given by (ζ − ζ1)(ζ − ζ2)dζn. The curve Ĉ1 is parametrized by
yn = (ζ − ζ1)(ζ − ζ2) and the nth root of f ∗w1 is given by v1 = ydζ. The covering
Ĉ2→C2 is defined by v⊗n

2 = w0. Finally, let v be the canonical differential satisfying
v⊗n = f ∗w0: it is determined by v = v2 on the component Ĉ2 and vanishes identically
on the component Ĉ1.

Denote the fiber of kth Prym-Tyurin vector bundleL(k) over the point (C0,w0)∈
Ddeg by Ω(k)

0 . We can decompose

Ω(k)
0 = Ω(k)

1 ⊕Ω(k)
2

where Ω(k)
1 is the space of holomorphic differentials on Ĉ1 which get multiplied

by ρk under the action of the automorphism (y, ζ)→ (ρky, ζ); the space Ω(k)
2 is the

analogous space of holomorphic differentials on Ĉ2.
The canonical differential v vanishes identically on Ĉ1. Thus the kernel of Φk

contains space Ω(k)
1 ⊗T⊗n−k. On another hand, the restriction of the morphism Φk

to the linear subspace Ω(k)
2 ⊗T⊗n−k is injective. Indeed the differential v does not

vanish identically on Ĉ2. Thus

kerΦk ' Λ(k)
1 ⊗T (n−k).

over a generic locus of Ddeg.
We have dimΩ(k)

1 = 1 for k = 1, . . . ,m. These one-dimensional spaces are
generated by the holomorphic differentials on Ĉ1 given by q(k)

1 = dζ
y2m+1−k . For k =

m + 1 . . .2m + 1 the eigenspaces Ω(k)
1 are trivial. Therefore,

dimΩ(k)
2 = dimΩ(k)

0 − 1 , k = 1, . . . ,m ;

dimΩ(k)
2 = dimΩ(k)

0 , k = m + 1, . . . ,2m.
We can also describe the images of Φk. For k = m + 1, . . . ,2m, the morphism Φk is
an isomorphism from Ω(k)

2 ⊗T⊗n−k to H0(C0,ω
n+k−1
C0

). However, for k = 1, . . . ,m the
image of Ω(k)

2 ⊗T⊗n−k is the space of holomorphic n − k + 1 differentials vanishing
at x0.

We have proved the following

Lemma 3.5.7. The kernel of Φk over Ddeg is the vector bundle Ω(k)
1 ⊗T⊗n−k. This

kernel is trivial for k > m and k = 0. If 1 ≤ k ≤ m, the image of Φk is the vector
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bundle whose fibers are the H0(C,ωn+k−1(−x0)) where x0 is the unique zero of order
2.

Therefore the first part of Lemma 3.5.4 and Formula (3.5.4) are valid for odd
n.

3.5.2.2. Study of Φk for k = 1 . . .m. We fix 1 ≤ k ≤ m. We have seen that the
kernel and cokernel of Φk are of dimension 1. Let (C0,w0) be a generic point in
Ddeg. Let W be an open neighborhood of (C0,w0) in X(g,n) with a non-vanishing
section q(k)

0 of Λ(k)|W such that q(k)
0 |Ddeg spans ker Φk|W∩Ddeg . The section Φk is of

co-rank 1 along Ddeg, thus the vanishing order of detΦk is equal to the vanishing
order of Φk(q(k)

0 ⊗ v⊗n−k) along Ddeg. Therefore, we will construct such a local
section q(k)

0 of Λ(k) and study the asymptotic behavior of q(k)
0 ⊗ v⊗n−k along Ddeg.

Let q̃(k)
0 be a non-vanishing section of ν̃∗(Ω(n−k+1)) over W such that: for all

(C,w) ∈ Ddeg, q(k)
0 (C,w) is a differential that does not vanish at the double zero of

w. Up to a choice of a smaller W , such a section exists. We label the coalescing
zeros by x1 and x2. We chose the parameter of the curve ζ such that position of x1
and x2 are ζ1 and ζ2 and w = (ζ − ζ1)(ζ − ζ2)(dζ)n (see Section 3.2.2). We define

q(k)
0 = (ζ1 − ζ2)−1+2k/n ·

f ∗(q̃(k)
0 )

vk .

We recall that root (ζ1 − ζ2)2/n is well defined, it is the integral of v between x̂1 and
x̂2 (see Lemma 3.3.6).

Over W \Ddeg, the differential q(k)
0 is obviously a non-vanishing section of

ν̂∗(Λ(k)). Beside, along Ddeg the differential q(k)
0 vanishes identically on Ĉ2 because

of the factor (ζ1 −ζ2)−1+2k/n. To compute the limit of q(k)
0 on Ĉ1, we remark that q(k)

0
is equivalent to

(3.5.5) (ζ1 − ζ2)1−2k/n[(ζ(x) − ζ1)(ζ(x) − ζ2)]k/n−1dζ .

in coordinate ζ. The differential (3.5.5) is invariant under simultaneous rescaling
ζ → εζ, ζi→ εζi, i = 1,2. Therefore, as x1,2→ x0, the differential q(k)

0 tends to the
holomorphic differential

q(k)
1 = y−n+kdx = (ζ1 − ζ2)1−2k/n[(ζ(x) − ζ1)(ζ(x) − ζ2)]k/n−1dζ

on the curve Ĉ1 (the generator of Ω(k)
1 ).

The image of q(k)
0 ⊗ v⊗n−k under Φk is (ζ1 − ζ2)1−2k/nq̃(k)

0 by construction. Thus
the determinant of Φk is equivalent to a constant times (ζ1 − ζ2)1−2k/n. The param-
eter (ζ1 −ζ2)2 being a transverse parameter to Ddeg, we conclude that the vanishing
order of Φk along Ddeg is 1 −

2k
n . This finishes the proof of Lemma 3.5.4 for odd n.

�

3.5.3. Even n = 2m. The proof of Lemma 3.5.4 is essentially identical to the
odd case. Let (C0,w0) be a generic point in Ddeg. Now we have ĝ1 = m − 1 and
ĝ2 = ĝ − m and the two components intersect in two points. Let Ωk

0 be the PT
bundle over (C0,w0) and let Ω(k)

i be the subspace of Ωk
0 of holomorphic differentials

supported on Ĉi. We still have the decomposition:

Ω(k)
0 = Ω(k)

1 ⊕Ω(k)
2
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except for k = m. The kernel Φk is Ω(k)
1 ⊗ T⊗n−k. This kernel is trivial for k =

m+1, . . . ,2m−1. For k = 1, . . . ,m−1, the map Φk has co-rank one and the generator
of Ω(k)

1 is the differential q(k)
1 = yk−2mdζ on the canonical covering Ĉ1 y2m = (ζ −

ζ1)(ζ − ζ2) (see Section 3.2.2 for definition of the parameters).
For k = m, the space Ω(k)

0 contains a 1-dimension subspace of differentials of a
third kind. These are differentials with simple poles at the nodal points x(1)

0 and x(2)
0

(both on Ĉ1 and Ĉ2) and opposite residues. The image of such differential under
Φm is a holomorphic m-differential. Beside Ω(m)

1 is trivial. Therefore the morphism
Φk is also bijective for k = m.

Similarly to the case of odd n, for k = 1, . . . ,m − 1, let q̃(k)
0 be a section of

ν̃∗(Ω(n−k+1)) over a neighborhood of (C0,w0) that does not vanish at the double

zero of w0. We define q(k)
0 = (ζ1 − ζ2)−1+2k/n · f ∗(q̃(k)

0 )
vk . and we study the asymptotic

behavior of Φk(q(k)
0 ⊗ vn−k) along Ddeg.

As in the odd case, the differential q(k)
0 is a non vanishing section of Λ(k) and

Φk(q(k)
0 ⊗vn−k) = (ζ1 −ζ2)−1+2k/n · q̃(k)

0 by construction. Therefore the vanishing order
of det(Φk) is given by 1 −

2k
n for k = 1, . . . ,m − 1. �

3.5.4. Obstruction to the extension of the Prym bundles to M
(n)
g . In order

to define the Prym-Tyurin classes we have constructed the space of admissible dif-
ferentials X(g,n) (see 3.1.5). Indeed, the Prym-Tyurin bundles are naturally defined
over X(g,n). The following theorem explains the necessity of the introduction of
the space X(g,n).

Theorem 3.5.8. Let g > 2 and k > 0. There exists no vector bundle Λ̃→ PM
(n)
g

such that Λ(k) = diff∗Λ̃(k), where diff : X(g,n)→ PM
(n)
g is the forgetful map.

PROOF. Suppose that there exists Λ̃→ PM
(n)
g such that Λ(k) = diff∗Λ̃(k). Then

in particular λk
PT = c1(Λ̃(k) and thus c1(Λk) = diff∗λk

PT . We will prove that this
equality does not hold for g> 2 and k > 0.

Let m > 2 and µ be the partition of n(2g − 2) given by (m,1, . . . ,1). We denote
by M(n)

g [m] the locus M(n)
g [µ] ⊂M

(n)
g . We suppose that gcd(m,n) = 1. We denote

by Dm the preimage of M(n)
g [m] in X(g,n) under diff. The locus Dm is a divisor

whose generic points are elements (C,w,xi, f : Ĉ →C) ∈ X(g,n) such that:

• the curve C is a nodal curve with two components: C2 isomorphic to
C with n(2g − 2) − m marked points attached in one node to a rational
component C1 at the zero of order m;
• the n-differential w is identically zero on C1 and has profile µ on C1;
• the covering curve Ĉ →C has two component Ĉ2 and Ĉ1. The component
Ĉ2 determined by the w as in Section 3.2.2 and Ĉ1 → C1 is the unique
n-sheeted ramified covering maximally ramified at the marked points and
the node.

Moreover the canonical root v of f ∗w vanishes identically on Ĉ1 and has a
zero of order m + n − 1 at the preimage of the zero of order m. Thus the morphism



3.5. PRYM-TYURIN DIFFERENTIALS ON Ĉ AND HOLOMORPHIC n-DIFFERENTIALS ON C 109

Φk : Λ(k)⊗T⊗(n−k)→ ν̃∗Ω(n−k+1)
g has a non-empty co-kernel along Dm for m large

enough. Therefore the line bundle

det(Λ(k))⊗diff∗
(
detΛ̃(k)∨)

has a global section which vanishes along divisors contained in X(g,n) \V . Thus
Λ(k) 6= diff∗Λ̃(k). �





CHAPTER 4

Hurwitz numbers and intersection in spaces of
differentials

In this chapter, we introduce new methods to compute Hurwitz in terms of
Hodge integrals in moduli spaces of curves. We express the number of ramified
coverings of P1 as intersection numbers in the moduli space of stable differentials
introduced in Chapter 2. Using this idea, we produce alternative proofs of the
ELSV formula (see [20]) and of the Goulden-Jackson-Vakil formula in genus 0
(see [34]).

4.1. Some families of Hurwitz numbers

4.1.1. Simple Hurwitz numbers. Let g,n be nonnegative integers such that
2g−2+n> 0 and let d be a positive integer. Let µ = (k1,k2, . . . ,kn) be a partition of
d. A simple ramified covering of P1 of type µ is a pair (C, f ) where C is a smooth
connected complex algebraic curve of genus g and f : C→ P1 is a map of degree
d with ramifications orders k1, . . . ,kn over ∞ and K = d + n + 2g − 2 other simple
ramification points (beware, our notation is slightly different from the one of [20]).
A morphism between two coverings (C, f ) and (C′, f ′) is given by a map φ : C→C′

such that the following diagram commutes

C
φ //

f   

C′

f ′~~
P1.

Definition 4.1.1. The simple Hurwitz number hg,µ is the number of equivalence
classes of simple ramified coverings of type µ counted with weight 1/|Aut(C, f )|.

If 2g − 2 + n > 0, we denote byMg,n the moduli space of stable nodal curves.
We will need two types of cohomology classes in this space:

• For i∈ [1,n], letLi be the line bundle onMg,n whose fiber at (C,x1, . . . ,xn)
is the cotangent line at xi. We set ψi = c1(Li).
• We denote by Hg,n →Mg,n the Hodge bundle. For 0 ≤ i ≤ g, we set
λi = ci(Hg,n).

The celebrated ELSV formula is the following theorem

Theorem 4.1.2. For all genus g and profile of ramification µ such that 2g−2+n>
0, we have

(4.1.1) hg,µ = (2g − 2 + d + n)!

(
n∏

i=1

kki
i

ki!

)
·
∫
Mg,n

1 −λ1 + . . .+ (−1)gλg∏n
i=1(1 − kiψi)

.

111
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There are already two different proofs of this theorem. The first proof was
obtained by studying a cone over Mg,n whose fibers are germs of meromorphic
functions at the marked points (see [20]). The second proof uses the localization
formula in the space of relative stable maps (see [27] and [36]). Our proof will be
close to the original one. Indeed, the cone of stable differentials is a modification
of the cone of principal parts of [20].

Remark 4.1.3. Our formulation of the ELSV formula differs from the original
one by a factor #Aut(k1, . . . ,kn). This depends on the convention that we chose:
here we count ramified of P1 with labeled preimages of∞. This formulation can
be found for example in [34].

Let g,n,m be nonnegative integers such that 2g − 2 + n + m > 0. Let d be a
positive integer and let µ = (k1, . . . ,kn) be a partition of d. We recall that the stack
of stable differentials Hg,n+m,µ is the moduli space whose points are given by the
datum of (C,α,x1, . . . ,xn+m) where C is a pre-stable curve with n+m marked points
and α is a meromorphic differential such that:

• The differential α has poles only at the nodes and at the first n marked
points.
• Poles at the nodes are of order at most one and poles at the first n marked

points are of order exactly ki + 1.
• There are finitely many automorphisms of (C,x1, . . . ,xn) that preserve α

(stability condition).

The space of stable differentialsHg,n+m,µ is the partial coarsification of Hg,n+m,µ as
in Chapter 2.

Remark 4.1.4. Beware, the space of stable differentials here is essentially the
same space as in Chapter 2 but the poles are at the first marked points and the poles
are of order ki + 1 (in particular we will not consider poles of order 1).

There is a natural map p :Hg,n+m,µ→Mg,n+m obtained by forgetting the dif-
ferential and stabilizing the curve C . With this map, Hg,n+m,µ is a cone of rank
d + n + g − 1 overMg,n+m. The Segre class ofHg,n+m,µ is given by

(4.1.2) ξ =

(
n∏

i=1

kki
i

ki!

)
·

1 −λ1 + . . .+ (−1)gλg∏n
i=1(1 − ki ψi)

.

Let ξ = c1(O(1))∈H2(PHg,n+m,µ,Q) whereO(1) is the dual of the tautological line
bundle. In order to prove the ELSV formula, we will prove that

(4.1.3) hg,µ = (2g − 2 + d + n)!
∫
PHg,n,µ

ξ4g−5+d+2n.

Remark 4.1.5. The space of stable differentials is a modification of the cone of
generalized principal parts used in [20]. We will see that the benefit of the cone of
stable differentials is that we dispose of several techniques to consider maps with
more general types of ramifications.



4.1. SOME FAMILIES OF HURWITZ NUMBERS 113

4.1.2. Simple Hurwitz numbers with cycles. Let g,n,m and d be as in the
previous Section. Let µ = (k1, . . . ,kn) be a partition of d and let ν = (k′1, . . . ,k

′
m) be

a partition of 2g − 2 + d + n + m.

Definition 4.1.6. A simple cyclic covering of type (µ,ν) is a pair (C, f : C→ P1)
where f is ramified with orders (k1, . . . ,kn) at ∞ and with orders (k′i,1, . . . ,1) at
m other marked points. The simple Hurwitz numbers with cycles is the number of
classes of simple cyclic coverings of type (µ,ν) counted with weight 1/|Aut(C, f )|.
We denote this number by hcyc

g (µ,ν).

Notation 4.1.7. Let Ag,µ,ν be the locus ofHg,n+m,µ of elements (C,x1, . . . ,xn+m,α)
such that:

• the curve C is smooth,
• the residues of α at the marked poles are equal to zero,
• the differential α has zeros exactly of order k′i − 1 at xn+i.

We have seen that the locus Ag,µ,ν is a locus of codimension 2g − 3 + d + 2n
in Hg,n+m,ν . The locus Ag,µ,ν is C∗-invariant and we denote PAg,µ,ν ⊂ PHg,n+m,µ

the projectivization of Ag,µ,ν . We denote by Ag,µ,ν and PAg,µ,ν the closures of
Ag,µ,ν and PAg,µ,ν . We will denote by ag,µ,ν ∈ H∗(PHg,n+m,ν ,Q) the Poincaré-dual
cohomology class of the closure of PAg,µ,ν . We proved at Chapter 2 that ag,µ,ν can
be computed explicitly in terms of tautological classes. We will prove

Theorem 4.1.8. The following equality holds

hcyc
0 (µ,ν) =

∫
PH0,n+m,µ

a0,µ,ν · ξm−2.

In general, we have∫
PHg,n+m,µ

ag,µ,ν · ξm−2 = hcyc
g (µ,ν) + boundary contributions,

where the boundary terms are Hurwitz numbers of lower genera. We will compute
explicitly these boundary terms on some examples in genus 1.

4.1.3. Double Hurwitz numbers. Let g,n,m and d be as in the previous sec-
tion. Let µ = (k1, . . . ,kn) and ν = (k′1, . . . ,k

′
m) be two partitions of d.

Definition 4.1.9. The double Hurwitz number hd
g(µ,ν) is the number of ramified

coverings of P1 with ramification profile over ∞ specified by µ and ramification
profile over zero specified by ν.

Cavalieri, Johnson and Markwig conjectured the existence of a moduli space
Pg,n+m of dimension 4g − 3 + n + m with a map to Mg,n+m such that there exists
classes Λ2i in A2i(Pg,n+m) for i = 1, . . . ,g such that

hd
g(µ,ν) =

∫
Pg,n+m

1 − Λ2 + . . .+ (−1)gΛ2g

(
∏n

i=1 1 − kiψi) · (
∏m

i=1 1 + k′iψm+i)
.

In fact, the space Pg,n+m should depend on µ and ν but be constant in some cham-
bers of the parameters (see [9]). This conjecture is a generalization of the conjec-
ture of Goulden, Jackson and Vakil:
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Conjecture 4.1.10. (GJV) If ν = (d), then there exists Pg,n and Λ2i ∈ A2i(Pg,n)
such that:

hd
g(µ, (d)) = K! d

∫
Pg,n

1 − Λ2 + . . .+ (−1)gΛ2g∏n
i=1(1 − kiψi)

,

where K is the number of simple branch points.

In this context we can see that hd
g(µ, (d)) = hcyc

g (µ, (d)). We will prove the
following:

Theorem 4.1.11. In genus 0, we have

hd
0(µ, (d)) = K! d

∫
M0,n

1∏n
i=1(1 − kiψi)

.

for all µ.

Remark 4.1.12. These two cases of the conjecture were already known. However
the proof that we give is geometric while the original one was a combinatorial
identity. We will see that another interest of this proof is to use the generalization of
completed cycles in genus 0 introduced by Kazarian, Lando and Zvonkine in [47].
We will see the importance of the “hidden” terms of the completed cycles formula
of Okounkov and Pandharipande (see [63]).

4.2. From stable differentials to stable maps

4.2.1. Stable maps. Let g,n,d be non negative integers. The space of stable
maps to P1 of degree d is the moduli space whose points correspond to classes of
tuples

(C,x1, . . . ,xn, f : C→ P1),
where

• (C,x1, . . . ,xn) is a nodal curve of genus g with n marked points;
• f is a map of degree d;
• there are finitely many automorphisms of f .

We denote this space by Mg,n(P1,d). This space is endowed with a perfect ob-
struction theory defined by Berhend and Fantechi (see [5]) and thus carry a virtual
fundamental class.

Definition 4.2.1. Let µ = (k1, . . . ,kn) be a partition of d. We define the Hurwitz
space Hurg,µ as the sub-space ofMg,n(P1,d) of stable maps (C,x1, . . . ,xn, f ) such
that

• there is no contracted component over∞;
• the point xi is mapped to∞ by f with order ki for all 1≤ i≤ n.

This space is not compact but it has structure of cone overMg,n and we denote
by PHurg,µ its projectivization which is compact. The space Hurg,µ is endowed
with a perfect obstruction theory (and a virtual fundamental cycle) that we recall
now.

The space Hurg,µ has a forgetful map p : Hurg,µ →Mg,n the Artin stack of
pre-stable curves. There is a relative perfect obstruction theory defined as follows
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at a point (C, f ,xi)

DefHurg,m,µ/Mg,n = H0
(

C, f ∗TP1(−
∑

kixi)
)
,

ObHurg,m,µ/Mg,n = H1
(

C, f ∗TP1(−
∑

kixi)
)
.

The global obstruction theory of Hurg,µ is defined as for the space of stable maps
(see [5]).

Remark 4.2.2. The perfect obstruction theory of Hurg,µ is not induced by the
perfect obstruction theory of Mg,n(P1,d) but rather by the obstruction theory of
the space of relative stable maps that we introduce in the next Chapter. Indeed the
space Hurg,µ is an open subspace of the space of relative stable maps.

4.2.2. Lyashko-Looijenga mapping. We denote by V = CK/SK where we re-
call that K is the number of simple branch points. Let (C, f ,x1, . . . ,xn) be a point
in Hurg,µ. The branch locus of f is the point of V whose entries are the following
values:

• if Cv is an irreducible component of C where f is not constant then we
take the set of critical values (repeated with the multiplicity of the critical
point if it is not simple);
• if Cv is an irreducible component of C where f is constant, the value of f

on this component repeated with multiplicity 2gv − 2;
• if x is a node of C, f (x).

Definition 4.2.3. The Lyashko-Looijenga mapping is the map

LL : Hurg,µ → V

f 7→ branch locus of f .

We define the map br : Hurg,µ→ C which maps a point to the sum of values of its
branch locus.

4.2.3. Integration of differentials. The space Hurg,µ is endowed with a map
diff : Hurg,µ→Hg,µ which maps a stable maps to its differential. Beside,we have
seen it has a map br : Hurg,µ→C which maps a stable map in Hurg,µ to the sum of
its branch points. These two maps together define a map of cones overMg,n

i : Hurg,µ→ C⊕Hg,µ.

This map is closed embedding. We will prove that PHurg,µ is obtained as the
vanishing locus of a global section of a vector bundle. We first consider the space
of stable differentials PHg,µ.

4.2.3.1. Residues. LetR be the linear subspace of Cn defined as

R = {(r1, . . . ,rn),r1 + . . .+ rn = 0}.
The residue map is the section of O(1)⊗R defined by

Res :O(−1) → R
α 7→ (resx1(α), . . . , resxn(α)).
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The zero locus of this map is the sub-locus P(H0
g,µ) of differentials with zero

residues.
4.2.3.2. Closed differentials. Let i ∈ [1,n] and ki > 0. Let C be a curve with

markings. A principal part of order ki at xi is a class of equivalence of germ of
meromorphic function with a pole of order ki where the equivalence is given by
f ∼ g if and only if f − g has no pole at xi. We denote by Pi,ki →Mg,n the cone of
generalized principal parts of order ki at xi defined in [20]. It is a compactification
of the space of principal parts. Moreover we denote

P =
n⊕

i=1

Pi,ki .

We define the morphisms int and φ1 on the diagram below

(4.2.1) O(−1) int //

##

p∗P
φ1 //

��

p∗(H∨g,n)

zz
PHg,µ

The map inti : O(−1)→ p∗Pi maps a meromorphic differentials to the germ of
meromorphic function at xi obtained by integration:((

u
z

)ki

+ a1

(
u
z

)ki−1

+ . . .+ aki−1
u
z

)
dz
z
7→ 1

ki

(
u
z

)ki

+
a1

ki − 1

(
u
z

)ki−1

+. . .+aki−1
u
z
.

The map inti is equivariant with respect to the action of Z/kiZ defined by multi-
plication of the local coordinate z by kth

i -roots of unity. The map int is defined as⊕n
i=1 inti. The map φ1 is defined as in [20]:

φ1 : p∗P → p∗(H∨g,n)

(p1, . . . , pn) 7→

(
ω 7→

n∑
i=1

resxi(pi ·ω)

)
.

We set Φ1 = φ1 ◦ int. The map Φ1 defines a section of the bundle O(1)⊗ p∗(H∨g,n).

Proposition 4.2.4. The vanishing locus of Φ1 is the locus of points (C,α,x1, . . . ,xn)
such that the primitives of the germs of poles of α at the xi’s can be extended into
a unique (up to an additive constant) global meromorphic function f on the curve
C. We denote by PZ1 the vanishing locus of Φ1.

PROOF. This proposition is a direct consequence of the Mittag-Leffler theo-
rem. �

4.2.3.3. Exact differentials. We complete the diagram 4.2.1 and we will define
the map Φ

(4.2.2) i∗1O(−1) Φ //

%%

i∗1(p∗(Hg,n)

��
PZ1

� � i1 // PHg,n,µ
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where i1 : PZ1→ PHg,n,µ is the embedding morphism. The map Φ maps a point
(C,α,x1, . . . ,xn) to d f −α where f is the unique function (up to an additive con-
stant) defined by the germs of poles of α and by the Mittag-Leffler theorem. Thus
Φ defines a section of the bundle i∗1O(−1)⊗ i∗1(p∗(Hg,n)).

Proposition 4.2.5. The vanishing locus of Φ is the locus of exact differentials i.e.
the locus of differential α such that there exists a meromorphic function f such that
d f = α. We denote this locus by PZ .

PROOF. The proof is straightforward. A point in the vanishing locus of Φ is
a point (C,α,x1, . . . ,xn+m) of PZ1 such that the unique meromorphic function f
defined by the germs of poles of α satisfies d f −α = 0. �

Following the same construction we obtain P(C⊕Z) as the vanishing locus
of global sections of vector bundles over P(C⊕Hg,µ). We obviously have the
isomorphism P(C⊕Z)' PHurg,µ.

4.2.4. Comparison of the perfect obstruction theories. We have already de-
fined a perfect obstruction theory on PHurg,µ. We will prove here

Proposition 4.2.6. Let i : PHurg,µ ↪→ P(C⊕Hg,µ) be the above embedding. We
have the following equality in H∗(P(C⊕Hg,µ),Q):

i∗[PHurg,µ]vir = ξ2g+m−1.

PROOF. First we note that:

ctop(O(1)⊗ (R⊕Hg,n⊕H
∨
g,n)) = ξm−1 · ctop(O(1)⊗Hg,n) ·

ctop(O(1)⊗H∨g,n)

= ξm−1 · (ξg
+λ1ξ

g−1
+ . . .) ·

(ξg
−λ1ξ

g−1
+ . . .)

= ξ2g+m−1.

Thus in order to prove the proposition we only need to prove that the virtual cycle
obtained from the theory of spaces of maps and the cycle obtained from vanishing
of the global section of R⊕Hg,n⊕H

∨
g,n are the same. To achieve this we work in

relatively to Mg,n. We fix a pre-stable curve C. We have the two exact sequences
of sheaves

0→OC→OC(
∑

kixi) → OC|∑kixi → 0,

0→ ωC(+
∑

xi) → ωC(
∑

(ki + 1)xi)→

ωC(
∑

(ki + 1)xi)
/
ωC(+

∑
xi)ωC→ 0.

The last terms of the two sequences are isomorphic via local integration. A germ
of meromorphic differentials with a pole of order ki + 1 is the same as equivalent
to a germs of meromorphic function with a pole of order ki. Thus we get two long
exact sequence with a common term:

0→ H0(OC)→ H0(OC(
∑

kixi))→ H0(OC|∑kixi)

→ H1(OC)→ H1(OC(
∑

kixi)) → 0,
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0→ H0(ωC(+
∑

xi))→ H0(ωC(
∑

(ki + 1)xi))→ H0(OC|∑kixi) → 0.

We have f ∗TP1(−
∑

kixi) 'OC(
∑

kixi). Thus, in the first exact sequence we rec-
ognize the deformation and obstruction terms of the obstruction theory of Hurg,µ

relative to Mg,n. Beside the tangent space of C⊕Hg,µ is H0(C)⊕H0(ωC((
∑

ki +

1)xi). Thus in the Grothendieck group of Mg,n we get

[DefHur/Mg,n − ObHur/Mg,n] = [T(C⊕Hg,µ)/Mg,n
− H0(ωC(

∑
kixi) − H0(ωC)∨].

Finally we remark that H0(ωC(
∑

kixi) splits into H0(ωC)⊕R to finish the
proof. �

4.3. End of the proof of Theorem 4.1.8

The end of our proof of the ELSV formula is the same as the original one. We
recall it here and adapt it to genus 0 cyclic coverings.

4.3.1. End of the proof of ELSV formula. Recall that V = CK/SK and that
the map LL : Hurg,µ(' Z)→V is the Lyashko-Looijenga mapping. The torus C∗
acts on V and the LL mapping is C∗-equivariant. We will use the same letter for
the projectivized Lyashko-Looijenga mapping:

LL : PZ → PV.

Let Zs ⊂ Hurgµ be the locus of elements (C,x1, . . . ,xn, f : C→ P1) such that
C is smooth. The Lyashko-Loojenga mapping restricted to Zs is étale (see [20]
Proposition A.3) and we have the following equality:

hg,µ = deg(LL|Zs
) = deg(LL|PZs).

Indeed, given a topological ramified covering ( f : C→ P1), for any complex struc-
ture on P1, there exists a unique complex structure on C and a unique function f
with the given topological type. We will prove:

Lemma 4.3.1. The simple Hurwitz numbers are given by:

hg,µ =
∫
PZs

ξK−2.

PROOF. We denote byO(1)V the dual of the tautological line bundle of PV (to
keep the notationO(1) for the dual of the tautological line bundle of P(C⊕Hg,µ)).
The class of a point in PV is given by c1(O(1)V )K−1 therefore the degree of LL|PZs

is equal to deg(LL|∗PZs
c1(O(1)V )K−1). The map LL : O(−1)→ V is equivariant

with respect to the C∗ action. Thus we have LL∗(O(1)V ) =O(1) and we get

deg(LL|Zs) =
∫
PZs

ξK−1.

�

Lemma 4.3.2. For all irreducible components W of PHurg,µ \ PZs, we have
deg(c1(O(1)|W )K−1) = 0.

PROOF. Let x0 = (C1,x1, . . . ,xn,α) be a point of PHurg,µ \PZs. The curve C
has several irreducible components and the differential α vanishes identically on
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at least one of these components. In which case, there exists a component C̃ of C
which satisfies:

• the differential α vanishes on C̃
• at least 2 of the marked zeros are carried by C̃.

To prove that C̃ exists, it is enough to take a component with maximal depth in the
level structure to which the differential α belongs (see [3]). Thus the image of x0
by LL lies in Σ. The boundary components of Z are mapped to an hypersurface
of V , therefore deg(c1(O(1)|W )K−1) = 0. �

Now the ELSV formula is a direct consequence of the following proposition:

Proposition 4.3.3. The following equality holds

[PZs] · ξK−1 = ξ4g−4+d+2n.

where [PZs] stands for the Poincaré-dual class of PZs in PHg,µ.

PROOF. We have seen that the virtual fundamental class of PHurg,µ is given
by ξ2g−2+n−1, thus

[PHurg,µ]vir · ξK−1 = ξ4g−4+d+2n.

The proposition follows from the fact (that we will not prove here) that the sections
Φ1 and Φ are transverse to PZs. Thus [PHurgµ]vir = [PZs] +β where β is a class
supported on PHurg,µ \PZs. It follows from Lemma 4.3.2 that β · ξK−1 = 0. �

4.3.2. Simple Hurwitz numbers with cycles. The proof of Theorem 4.1.8 is
simpler that the proof of the ELSV formula. We fix µ and ν as in Section 4.1.2.
We consider the locus A0,µ,ν ⊂H0,m,µ of differentials over smooth curves, with no
residues and zeros of orders prescribed by ν.

In genus 0 the datum of a differentials with prescribed zeros is equivalent to the
datum of a meromorphic function with fixed ramification orders modulo additive
constant. Indeed all meromorphic differentials without residues can be integrated.
The obstructions coming from the Hodge bundle and its dual are trivial.

Therefore we can define the LL-mapping as follows:

LL : A0,µ,ν⊕C → V

f 7→ ( f (xn+1), . . . , f (xn+m)).

We also denote the projectivization of the Lyashko-Looijenga mapping by LL. We
have

hcyc
0 (µ,ν) = deg(LL|A0,µ,ν⊕C)

Therefore as for the ELSV formula we have

hcyc
0 (µ,ν) =

∫
P(A0,µ,ν⊕C)

ξK−1 =
∫
PA0,µ,ν

ξK−2.

The proof is much simpler because there are no boundary components to take into
account.
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4.4. Completed cycles

4.4.1. Shifted symmetric functions. Let N be a positive integer. The sym-
metric group S(N) acts on the algebra Q[λ1, . . . ,λN], for a permutation σ the action
is defined by

σ · f (λ1 − 1, . . . ,λN − N) = f (λσ(1) −σ(1), . . . ,λσ(N) −σ(N)).

We denote by Q[λ1, . . . ,λN]S(N) the algebra of polynomials invariant under the
action of S(N). This algebra has a nautral filtration by the degree. Moreover we
have a natural arrow

Q[λ1, . . . ,λN+1]S(N+1)→Q[λ1, . . . ,λN]S(N)

sending λN+1 to 0. Thus we can define

Definition 4.4.1. The algebra of shifted symmetric functions Λ∗ is defined as the
projective limit of the Q[λ1, . . . ,λN]S(N).

Concretely an element f of Λ∗ is a sequence { fN} satisfying:

• the sequence of degrees is bounded;
• fN = fN+1|λN+1=0.

We are going to build two differents basis of this space. The completed-cycle
formula gives the coefficients allowing to go from one basis to the other.

4.4.2. Partition functions. Let P(N) be the set of partitions of N. The set
P(N) indexes the irreducible representations of S(N) (or conjugacy classes of S(N))
. For partitions λ and µ, we denote by dim(λ) the dimension of the representation
associated to λ, |Cµ| the cardinal of the conjugacy class of µ and χλµ the evaluation
of the character of the representation defined by λ at the conjugacy class Cµ. The
Fourier transform gives an ismorphism between the algebra of functions invariant
by conjugacy and the algebra of functions on P(N)

φN : Z(N) → QP(N)

Cµ 7→

(
fµ : λ 7→ |Cµ|

χλµ
dim(λ)

)
.

If we define P as the set of all partitions, we can define an extended Fourier trans-
form

φ :
∞⊕

d=0

Z(N)→QP .

This morphism is no longer an isomorphism however it is injective and the image is
the algebra of shifted symmetric functions. Indeed, let f ∈ Λ∗, for a finte sequence
(x1,x2,x3, . . .) (i.e. non-zero on a finite set), the evaluation of f(x1,x2, . . .) is well-
defined. For a partition λ = (λ1,λ2, . . . ,λl), we can evaluate f by completing by a
sequence of zeros. Therefore f defines an element of QP . The element f is in fact
uniquely determined by the evaluation on the partitions, thus Λ∗ as a subalgebra of
QP .
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A non-trivial result of Kerov and Olshanski (see [49]), states that the (fµ)µ∈P
are shifted symmetric and generate all Λ∗, therefore these functions provide a first
basis of Λ∗.

4.4.3. Shifted symmetric power sums. Let k be a positive integer and λ be
partition. We define pk ∈ Λ∗ by:

pk(λ) =
∞∑
i=1

[
(λi − i −

1
2

)k
− (−i +

1
2

)k
]
.

For all positive integers n, the restriction to the algebra of polynomials in N vari-
ables is of degree k, hence pk is a well-defined element of Λ∗. For a partition µ, we
define pµ =

∏
pµi . Vershik and Kerov (see [48]) proved that:

fµ =
1∏
µi

pµ + . . . ,

the other terms being associated to partitions of size strictly lower than |µ|. Thus
(pµ) and fµ are related by an infinite dimensional triangular matrix. We will denote
by

Cµ =
1∏
µi
φ−1(pµ) ∈

∞⊕
d=0

Z(N),

the completed conjugacy classes. For any positive intger k, we denote by (k) the
completed cycle. We denote by

S(z) =
sinh(z/2)

z/2
,

and define the numbers ρk,µ as the coefficients in the expansion of∏
µi

|µ|!
S(z)

∏
S(µiz) =

∑
k≥|µ|+l(µ)−1

ρk,µ

(k − 1)!
zk+1−|µ|−l(µ).

Proposition 4.4.2. (Completed cycles formula) We have

(k) =
∑
µ

ρk,µ · (µ).

We give the expression of the first completed cycles:

0! · (1) = (1)

1! · (2) = (2)

2! · (3) = (3) + (1,1) +
1

12
· (1)

3! · (4) = (3) + 2 · (2,1) +
5
4
· (2)

4! · (5) = (5) + 3 · (3,1) + 4 · (2,2) +
11
2
· (3)

+ 4 · (1,1,1) +
3
2
· (1,1) +

1
80
· (1)

In these expression we have boxed the boundary terms corresponding to genus 0
contributions.
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4.4.4. Gromov-Witten/Hurwitz correspondence. The correspondence be-
tween Gromov-Witten theory and Hurwitz theory is based on the completed cycle
formula. We present this correspondence for P1 here but it holds for any smooth
algebraic curve X .

Let g,n,d be non negative integers. We consider the moduli space of sta-
ble maps to P1 of degree d denoted by Mg,n(P1,d). We recall that this space is
endowed with a forgetful map st :Mg,n(P1,d)→Mg,n and the evaluation map
evi :Mg,n(P1,d)→ P1 of the i-th marked point for all 1≤ i≤ n. We denote by pt
the class of point in H2(P1,Q). We are interested in the numbers

〈τk1τk2 . . . τkn〉 =
∫

[Mg,n(P1,d)]vir

n∏
i=1

st∗(ψki
i )ev∗i (pt).

On another side if we give ourselves n partitions of d, (µ1, . . . ,µn), we will
denote by Hd,g(µ1, . . . ,µn) the Hurwitz number for connected coverings with n
prescribed profiles of ramification (and possibly other simple ramification point).
We generalize this notation. If µ is a partition of d′ ≤ d, then we denote by µ̃ the
partition obtained by completing µ with ones. We define in this case

Hd,g(µ1, . . . ,µn) = Hd,g(µ̃1, . . . ,µn) ·
n∏

i=1

(
m1(µ̃i)
m1(µi)

)
,

where m1(µ) stands for the number of 1 in the partition µ.

Proposition 4.4.3. (GW/H correspondence) We have the following equality

〈τk1τk2 . . . τkn〉 = Hd,g
(
(k1), . . . , (kn)

)
,

where the right hand-side is defined by linear expansion of the completed cycles in
ordinary partitions.

4.4.5. Completed cycles formula for classes. We have seen at Chapter 2 how
to compute the ag,µ,ν in general. We will restrict ourselves here the genus 0 case
with one marked zero. In particular we will reformulate induction formula 2.3.41
in this restricted context.

Let d be positive integer and let µ be a partition of d. Let k be a positive
integer. We denote by A0,µ,k ⊂Hg,n+1,µ the locus of differentials with zero residues
and with a zero exactly of order k −1 at the last marked point. Note that once again
we do not assume here that k − 1 = 2g − 2 +

∑
ki + n, i.e. the differential can have

unmarked zeros. Then we have:

(ξ + kψn+1)a0,µ,k = a0,µ,k+1 + boundary terms.

Now we will describe the boundary terms.
A twist I = (I1, . . . , Im) is a partition of k of length greater than 1. Let (µ1, . . . ,µm)

be a partition of the set of values µ such that non of the µi’s is empty. The datum
of I and the (µi)i=1...,m will be called a twisted graph. We represent graphically this



4.4. COMPLETED CYCLES 123

datum below:
µ1 µ2 . . . µm

0

I1

0
I2

. . . 0

Im
0

xn+1.

We define a locus AI,(µi)⊂H0,n+1,µ associated to the twisted graph (I, (µi)). A point
(C,x1, . . . ,xn+1,α) in AI,(µi) is a curve together with a differential such that:

• the curve C is composed of m + 1 components: m components attached to
a main component;
• the point xn+1 belongs to the central components and the set of marked

points on the ith exterior component is determined by µi;
• the differential αi on the ith exterior component has poles without residues

at the marked points and a zero of order Ii − 1 at the node;
• the differential vanishes on the main component.

Remark 4.4.4. Twisted graphs represent boundaries of A0,µ,k. The above condi-
tions are determined to ensure that the point (C,x1, . . . ,xn+1,α) is in the closure of
A0,µ,k.

Let I = (I1, . . . , Im) be a twist, we define the class of a twist as

iI =
∑
(µi)i

[PAI,(µi)],

where the sum is over all possible twisted graphs with twist I and [PAI,(µi)] is the
Poincaré-dual class of PAI,(µi) in H∗(PH0,n+1,µ,Q). We define the multiplicity of a
twist as m(I) =

∏m
j=1 I j. Then we have

(4.4.1) (ξ + kψn+1)a0,µ,k = a0,µ,k+1 +

∑
I

m(I)
|Aut(I1, . . . , Im)|

iI.

Remark 4.4.5. This formula is only the reformulation of the general induction
formula of Theorem 2.3.41.

We get the following expressions for the class ψ = ψn+1:

1! ψ = aµ,2 + O(ξ)

2! ψ2 = aµ,3 +
1
2

i1,1 + O(ξ)

3! ψ3 = aµ,4 + 2i1,2 +
1
6

i1,1,1 + O(ξ)

4! ψ4 = aµ,5 + 3i1,3 + 2i2,2 + 2i1,1,2 +
1
24

i1,1,1,1 +
2
3
ψi1,1,1 + O(ξ)

In these expressions, we have not represented the terms of higher degrees in ξ. The
boxed terms are the terms which are not present in the completed-cycles formula
of Okounkov and Pandharipande. For example, we can see that the term i1,1,1
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contributes in the expression of ψ4 once multiplied by ψ. We will see that these
terms are used in the computation of double Hurwitz numbers. The expressions
above have already been obtained for universal cohomology classes of singularities
in families of stable maps (see [47]).

In genus 0 and n = 1. If g = 0 and n = 1, then the stability condition 2g−1+n>
0 is no longer satisfied. Thus the moduli space of curves M0,1+1 is ill-defined.
However, the moduli space of PH0,1+1,(d) is well-defined and so are the loci a0,(d),k.
In which case, we have a simpler formula relating a0,(d),k and a0,(d),k

(4.4.2)
d − k

d
ξa0,µ,k = a0,µ,k+1.

4.4.6. GJV formula in the genus 0. Let n,m be positive integers such that n+

m> 2. Let d be a positive integer and let µ be a partition of length n of d and ν be a
partition of n+m+d −2 of length m. We proved that hcyc

0 (µ,ν) =
∫
PH0,n+m,µ

ξn−3a0,µ,ν .

We take ν = (d,2, . . . ,2). The forgetful map π : PH0,n+m,µ→ PH0,n+1,µ maps the
locus A0,µ,ν to the locus A0,µ,d . The map π|A0,µ,ν is of degree K!. Thus:

hd
0(µ, (d)) = hcyc

0 (µ,ν) =
∫
PH0,n+m,µ

ξn−3a0,µ,ν

= K!
∫
PH0,n+1,µ

ξn−3a0,µ,d .

Thus, in order to prove Theorem 4.1.11, we have to prove that:∫
PH0,n+1,µ

ξn−3a0,µ,d = d
∫
M0,n

1∏n
i=1(1 − kiψi)

=
∫
M0,n+1

1∏n
i=1(1 − kiψi)

.

This equality is a special case of the following more general proposition:

Proposition 4.4.6. For all profiles µ of length greater than 1 and all µ ≥ 1, we
have: ∫

PH0,1+n,µ

ξn−3−kψk
n+1a0,µ,d =

∫
M0,n+1

ψk
n+1∏n

i=1(1 − kiψi)

PROOF. We prove this proposition by induction on the length of µ. The base
of the induction is at n = 2. In which case we can already see that for k> 1 we have
ψk

n+1 = 0, thus we only have the check the above proposition for k = 0. Besides, we
have already proved in [71] that∫

PH0,3,(k1 ,k2)

a0,(k1,k2),(d) = 1.

Now we assume that n is greater than 2. Let µ be a profile of length n. We
write Formula (4.4.1) for k = d, we get:

(ξ + dψn+1)a0,µ,(d) = a0,µ,(d+1) +

∑
I

m(I)
iI

|Aut(I1, . . . , Im)|
.

The class a0,µ,(d+1) is equal to zero: indeed an element of A0,µ,(d+1) gives a mero-
morphic function of degree d with a zero of order d + 1 at the last marked point.
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This is not possible, thus A0,µ,(d+1) is empty. Then we have∫
PH0,1+n,µ

ξn−k−4ψk
n+1(ξ + dψn+1)a0,µ,(d) =

∑
I

m(I)
|Aut(I1, . . . , Im)|

∫
PH0,1+n,µ

ξn−k−4ψk
n+1iI,

Now we compute the left-hand side of this equality. Let I be a twist. The class is
ψk

n+1iI is equal to 0 if k is greater than length(I) − 2. If k is inferior to length(I) − 2
then we have

∫
M0,length(I)−2

ψk
n+1 = 0. Now if k = length(I) − 2, then

∫
M0,length(I)−2

ψk
n+1 =

1. Let I be a twist of length k +2. Let (I, (µ)i=1,...,k−2) be a twisted graph. We denote
by aI,(µi) the Poincaré-dual class of AI,(µi). We have∫

PH0,1+n,µ

ξn−3−kψk
n+1aI,(µi) = m(I)

m∏
i=1

hd
0(µi, (Ii))

=
m∏

i=1

Ilength(µi)−1
i ,

where we have used the induction hypothesis from the first line to the second:
hd

0(µi, (Ii)) = Ilength(µi)−2
i . Therefore we have:(∫

PH0,1+n,µ

ξn−k−3ψk
n+1a0,µ,(d)

)
+ d

(∫
PH0,1+n,µ

ξn−k−4ψk+1
n+1a0,µ,(d)

)

=
1

(k + 1)!

∑
(µi)i=1...k+2

(
m∏

i=1

|µi|length(µi)−1

)
where the sum goes over all partitions of µ into k +2 sets and |µi| =

∑
k j∈µi

k j. Now
using string and dilaton relations we can check that:∫

M0,n+1

ψk
n+1∏n

i=1(1 − kiψi)
+ d

∫
M0,n+1

ψk+1
n+1∏n

i=1(1 − kiψi)

=
1

(k + 1)!

∑
(µi)i=1...k+2

(
m∏

i=1

|µi|length(µi)−1

)
.

Moreover, for k > n − 2 we have ψk
n+1 = 0. Therefore we get∫

M0,n+1

ψk
n+1∏n

i=1(1 − kiψi)
+ d
∫
M0,n+1

ψk+1
n+1∏n

i=1(1 − kiψi)

=

(∫
PH0,1+n,µ

ξn−k−3ψk
n+1a0,µ,(d)

)
+ d

(∫
PH0,1+n,µ

ξn−k−4ψk+1
n+1a0,µ,(d)

)
,

and ∫
M0,n+1

ψk
n+1∏n

i=1(1 − kiψi)
=

(∫
PH0,1+n,µ

ξn−3−kψ j
n+1a0,µ,(d)

)
= 0

for k > n − 2. Therefore, for all k ≥ 0, we have:∫
M0,n+1

ψk
n+1∏n

i=1(1 − kiψi)
=
∫
PH0,1+n,µ

ξn−k−3ψk
n+1a0,µ,(d).

�





CHAPTER 5

Double ramification cycles and strata of differentials

This chapter is an overview of a series of conjectural relations between classes
of strata differentials, moduli spaces of r-spin structures and Double Ramification
cycles.

5.1. Moduli space of r-spin structures

We define here moduli spaces of roots of line bundles and a series of tautolog-
ical classes associated to them.

5.1.1. Spaces of roots. Let r be a positive integer and let k be a nonnegative
integer. Let A = (a1, . . . ,an) be a list of integers in {0, . . . ,r − 1} such that r divides
k(2g − 2) −

∑
mi. Let (C,x1, . . . ,xn) be a a smooth curve with n marked points. A

r-th root of type (k,A) on C is a line bundle L→C which satisfies

L⊗r ' ωk
C −

n∑
i=1

ai(xi).

(if k = 1, we speak of r-spin structure).

Definition 5.1.1. The space of r-th roots of type (k,A) is the moduli space whose
points represent classes of smooth curves with n markings and a rth root of type

type (k,A). We denote this moduli space byMk, 1
r

g,A

There is a natural map ε :Mk, 1
r

g,A→Mg,n obtained by forgetting the r-th root L.
The map ε is étale of degree r2g−1.

The moduli space Mk, 1
r

g,A admits a smooth compactification Mk, 1
r

g,A (see [43]

and [44]). It is endowed with a universal curve π : Ck, 1
r

g,A→M
k, 1

r
g,A such that the fiber

of a point (C,L,x1, . . . ,xn) is isomorphic to C. Moreover there is a tautological line
bundle L→ C1/r,A

g,n such that the restriction of L to the fiber of (C,L,x1, . . . ,xn) by

π is isomorphic to the line bundle L→C. Finaly the map ε :Mk, 1
r

g,A extends to finite
map.

127
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5.1.2. Pixton’s class. We will denote by R∗π∗L = [R0π∗L → R1π∗L] in the
derived category ofM1/r,A

g,n . We summarize the notation on the following diagram

L

((

��

C1/r,A
g,n

π��

R∗π∗L M1/r,A
g,n

ε
��

Mg,n.

We are interested in the Chern classes of R∗π∗(L). In [16], Chiodo gave an
expression of these classes in term of tautological classes using the Grothendieck-
Riemann-Roch formula. We denote by ci(g,r,k,A) the i-th Chern class of R∗π∗(L).

If µ = (k1, . . . ,kn) be a list of and integers such that k(2g−2) =
∑

ki. We denote
by µ[r] the list of integers ai ∈ {0, . . . ,r − 1} such that ai ≡ ki[r] (the reduction
modulo r of µ).

Proposition 5.1.2. (see [66] or [42]). We consider the function:

P̃k
g,µ : N∗ → Ag(Mg,n)

r 7→ rε∗(cg(g,r,k,µ[r])).

The function P̃k
g,µ is a polynomial. We denote this polynomial by Pk

g,µ.

Definition 5.1.3. Pixton’s class is defined as

Pk
g,µ = Pk

g,µ(0).

5.1.3. Witten’s top Chern class. We suppose here that k = 1 and that µ has
only postive entries.

In [80] Witten has also introduced a notion of top Chern class that we denote
by cW

r,A. This class is supposed to behave as a “top Chern class of R1π∗L”. This
class is ill defined a priori. However in [45], the othors defined a series of axioms
that Witten’s class should satisfy. Several equivalent constructions of the cW

r,A have
been proposed based on these axioms: the first two constructions and [68], [15]
and recently Chang, Li and Li gave a construction based on the formalism of lo-
calization by cosection (see [10] and [50]). This last approach seems now to be the
most natural.

The degree of Witten’s top Chern class is:

deg(cW
r,A) =

(r − 2)(g − 1) +
∑

ai

r
.

Now for r large enough we have µ[r] = µ and we have imposed that the sum of the
entries of µ is 2g − 2. Thus

deg(cW
r,µ[r]) = g − 1,

for r large enough. Pixton proved
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Proposition 5.1.4. (see [64]). We consider the function:

P̃W
g,µ : N∗ → Ag−1(Mg,n)

r 7→ rg−1ε∗(cW
r,µ[r]).

The function P̃W
g,µ is a polynomial. We denote this polynomial by PW

g,µ.

Definition 5.1.5. We define Pixton-Witten’s class as

PW
g,µ = PW

g,µ(0).

5.2. Double Ramification cycles

In this section we recall the construction of Double Ramification cycles for
maps to P1.

5.2.1. Relative stable maps. Let d≥ 0. We denote byMg,n(P1,d) the moduli
space of stable maps to P1 of degree d. In Chapter 4 we have introduced a subspace
of Mg,n(P1,d), namely the Hurwitz space. Its points are stable maps with fixed
ramification profile at infinity. A construction exists for fixed ramification profiles
at both 0 and infinity. The Hurwitz spaces are not well-behaved. In particular these
are not proper. We will describe here a compactification of Hurtwitz spaces by the
so-called relative stable maps. This compactification was introduced by by Ionel
and Parker in a symplectic context [41] and by Jun Li in the algebraic set-up.

We fix a P1 curve with its two special points 0 and∞. Let k0 and k∞ be two non
negative integers. We denote by P1[k0,k∞] the nodal curve obtained by attaching a
chain of k0 (resp. k∞) rational curves at 0 (resp. at∞). We suppose that the chains
of P1 are obtained by attaching the 0 of a P1 to the ∞ of the next one. Thus the
torus (C∗)k0+k∞+1 acts on P1[k0,k∞] by multiplication on each component. Finally,
his curve has two special points x0 and x∞ which are supported on the extreme
rational component of both chains (see Figure 1 below).

0

+2
+1
+4

-2
-1
-3

-1-3
+3
+4

-4

FIGURE 1. Example of relative stable map.

A pre-deformable map to P1[k0,k∞] is a stable map f : C→ P1[k0,k∞] such
that:

• the preimage of a node of P1[k0,k∞] is a set of nodes of C;
• there are no contracted components over the nodes of x0 and x∞;
• if a node of C is mapped to a node of P1[k0,k∞], the ramification orders

of f at the branches of C are the same (kissing condition);
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• the action of the torus C∗ on a rational components of the attached chains
cannot leave the curve C invariant.

Definition 5.2.1. We denote byMg,n(P1,µ,k0,k∞) the space of pre-deformable
maps to P1 such that the ramification order at the marked points 0 and∞ are pre-
scribed by µ. The torus (C∗)k0+k∞+1 acts P1[k0,k∞] and thus onMg,n(P1,µ,k0,k∞).

The space of relative stable mapsMg,n(P1,µ) is the disjoint union of all spaces
Mg,n(P1,µ,k0,k∞)/(C∗)k0+k∞+1 for k0 and k∞ ≥ 0.

Here the union is disjoint, however Jun Li described the local structure of the
space of relative stable maps. In particular it is connected. One important feature
of the space of relative stable maps is

Proposition 5.2.2. The space of relative stable maps is a DM stack with a per-
fect obstruction theory and a virtual fundamental cycle. The virtual dimension of
Mg,n(P1,µ) is 2g − 3 + n.

5.2.2. Rubber maps. Jun Li also introduced a slightly different space of “rub-
ber” maps (sometimes also called the un-parametrized realtive stable maps).

Definition 5.2.3. The space of rubber maps is the closed substack ofMg,n(P1,µ)
of maps f : C→ P1[k0,k∞] such that:

• k∞ = 0 and k0 ≥ 1;
• the curve above the main P1 is a disjoint union of rational curves Ci with

a node and a marked point xi with ki < 0; the map f : Ci→ P1 is given by
z 7→ zki .

We denote byM∼(P1,µ) the space of rubber maps.

Proposition 5.2.4. The space of rubber maps is a DM stack with a perfect ob-
struction theory and a virtual fundamental cycle of virtual dimension 2g − 3 + n.

5.2.3. Double Ramification cycles. Both spacesMg,n(P1,µ) andM∼g,n(P1,µ)
have a forgetful map p toMg,n obtained by forgetting the map to P1. The double
ramification cycle DR0

g(µ) is the class

p∗
[
M∼g,n(P1,µ)

]vir ∈ Ag(Mg,n).

This was a long-standing problem to compute this cycle (see [39]). This problem
was solved by Janda, Pandharipande, Pixton and Zvonkine

Proposition 5.2.5. (see [42])The following equality holds in Ag(Mg,n):

DR0
g(µ) = P0

g,µ.

The open problem now is to find a geometric interpretation of the classes P0
g,µ

for k ≥ 1 and PW
g,µ.

5.3. Twisted canonical divisors

In [28], Farkas and Pandharipande proposed a compactification of strata of
differentials different from the one we use in Chapter 2 (in spaces of stable dif-
ferentials). The construction of Farkas and Pandharipande has been generalized



5.3. TWISTED CANONICAL DIVISORS 131

to differentials of superior order by Johannes Schmitt. We will recall here their
definitions.

5.3.1. Space of twisted canonical divisors. We fix g,n such that 2g−2+n> 0
and k > 0. Let µ = (k1, . . . ,kn) be a list of intergers such that the sum of the ki’s is
k(2g − 2). We denote byHk

g(µ)⊂Mg,n the locus of smooth curves such that

ω⊗k
C '

n∑
i=1

ki(xi)

and we denote by Hg(µ) its closure inMg,n. In this section we will call the locus
Hk

g(µ) the space of k-canonical divisors.
Let Γ be a stable graph (see definition 1.4.3). We recall that a twist on Γ is the

datum of a function I : Half-edges(Γ)→ Z such that:

• If h and h′ form an edge, then I(h) + I(h′) = 0.
• Let v and v′ be two vertices, and {(h1,h′1), . . . , (hn,h′n)} be the set of

edges from v to v′. Then either I(h j) = 0 for all 1≤ j≤ n, or I(h j)> 0 for
all 1≤ j ≤ n, or I(h j)< 0 for all 1≤ j ≤ n. We say that v = v′, or v> v′,
or v< v′, depending on the above inequalities.
• The relation ≤ thus defined on vertices is transitive.

A pair (Γ, I) of a stable graph Γ and a twit I on Γ is called a twisted graph.

Definition 5.3.1. A twisted canonical divisor of type µ is a marked curve (C,x1, . . . ,xn)
inMg,n such that

• there exists a twist I on the dual graph of C;
• for each irreducible component Cv of C we have:

ω⊗k
Cv
'
∑
i 7→Cv

ki(xi) +

∑
h7→Cv

(I(h) − k)xh

where i 7→Cv stands for the marked points lying on Cv and h 7→Cv stands
for the branches of nodes lying on Cv.

We will denote by H̃k
g(µ)⊂Mg,n the moduli space of k-twisted canonical divisors.

The space of k-twisted canonical divisors is singular and it is not even reduced
in general. It has the following properties:

Proposition 5.3.2. The space H̃k
g(µ) is proper. If all ki are positive and k|ki for

all 1 ≤ i ≤ n then the space H̃k
g(µ) is not of pure dimension, it has components of

dimension 2g − 2 + n and 2g − 3 + n. Otherwise it is of pure dimension 2g − 3 + n.
Morover irreducible components ofHk

g(µ) are irreducible components of H̃k
g(µ).

In the case first (positive ki’s divisible by k) the components of dimension 2g − 2 + n
corresponds to components ofH1

g(µk ) where µ
k is the list of integers ( k1

k , . . . ,
kn
k ).

Thus the spaces H̃k
g(µ) are compactifications of Hk

g(µ) with extra components
but we will see that the classes of the H̃k

g(µ) are (conjecturaly) much better-behaved

than the classes ofHk
g(µ).
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5.3.2. Components of H̃k
g(µ). We fix, g,n,k, and µ as the previous Section.

We have seen that the components ofHk
g(µ) are irreducible components of H̃k

g(µ).
We give here an explicit classification of the extra component.

A twisted stable graph (Γ, I) is called simple-star for the profile µ if:

• there exists a unique vertex v0 of Γ and a non empty set of outlying ver-
tices v1, . . . ,vr;
• all edges of Γ connect the central vertex to an outlying vertex;
• the values of ki for legs adjacent to outlying vertices have weights divisi-

ble by k;
• the twists at half-edges of the central vertex is strictly negative.

We denote by Sk
g,µ the set of simple star graphs. If (I,Γ) is simple-star, we denote

by µ0 the list whose entries are the ki’s for the legs i adjacent to v0 and I(h) − k for
the half-edges adjacent to v0. Moreover, if vr is an outlying vertex, we denote by
µr the list of k′is and I(h) + k for legs and half-edges adjacent to vr.

Proposition 5.3.3. Let W be an irreducible component of H̃k
g(µ) \Hk

g(µ). There
exists a simple-star twisted graph (Γ, I) such that W is an irreducible component
of the stack:

ζΓ

Hk
g0

(µ0)×
∏

vr∈V out(Γ)

H1
g

(µr

r

)

5.3.3. Fundamental class of H̃k
g(µ). We have now all elements to define the

Double Ramification cycle for higher values of k. We define this cycle as a weighted
sum over the irreducible components of A2g−3+n(H̃k

g(µ).
Let (Γ, I) be a simple-star graph as above. We define the multiplicity of (Γ, I)

as

mΓ,I =

∏
h7→v0

−I(h)

|Aut(Γ)| · k|V (Γ)|−1

where the product is over all half edges adjacent to the central vertex.

Definition 5.3.4. We suppose that µ is not divisible by k or contains at least on
positive value, then we set

DRk
g(µ) = [Hk

g(µ)] +

∑
(Γ,I)∈Sk

g,µ

mΓ,I · ζΓ∗

[Hk
g0

(µ0)
]
·
∏

vr∈V out(Γ)

[
H1

g

(µr

r

)] .
This is a class in Ag(Mg,n).

Remark 5.3.5. This definition of the Double Ramification cycles may seem arbi-
trary at first sight. However, in [38], Jérémy Guéré used log-geometry to define a
moduli space D(µ) of “rubber” differentials. Based on the ideas developed in [14]
and [37], he managed to prove that this space is a DM stack with a perfect ob-
struction theory and construct its virtual fundamental cycle. Besides there exists a
forgetful map p :D(µ)→Mg,n. He proved that DRk

g(µ) = p∗[D(µ)]vir.
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Conjecture 5.3.6. If µ is not divisible by k or contains at least one positive value,
then following equality holds in Ag(Mg,n):

DRk
g(µ) = Pk

g,µ.

Remark 5.3.7. As a consequence of Theorem 2.1.18 we can already prove that
the class DRk

g(µ) is tautological for k = 1.

Remark 5.3.8. A complementary conjecture has been proposed for the value of
Pk

g,µ in the case of µ positive and divisible by k (see [72]).

A second conjecture for the specific case k = 1 and µ positive has been proposed
in [64].

Conjecture 5.3.9. For all partition µ of 2g − 2 the following equality holds in
Ag−1(Mg,n)

[Hg(µ)] = (−1)gPW
g,µ.

This conjecture is easier to state but somewhat more difficult to handle because
the construction of Witten’s is more technical than the ci(Rπ∗L). The proof will
most likely use the localization by cosection of Kiem and Li.





APPENDIX A

Algebraic Stacks

We give here the basic definitions of the theory of algebraic stacks. Then we
give the definition of the moduli spaces of curves in this language and state their
main properties.

This presentation essentially follows the notes of Edidin [19] and the original
paper of Deligne and Mumford [17].

A.1. Sites and sheaves

First, we recall the definition of Grothendieck topolgies and of sheaves on sites.
Let C be a category such that the fiber product exists.

Definition A.1.1. Let c∈ C be an object. A sieve on c is a subfunctor of Hom(−,c).
If c and c′ are objects of C, f : c→ c′ is a morphism and s is a sieve on c′ then we
denote by f ∗s the pull-back of s by f i.e. the functor: s×Hom(−,c′) Hom(−,c) with
its embedding in Hom(−,c).

Definition A.1.2. A Grotendieck topology on C is a collection of Sieves Cov(c)
(covering sieves) for each object c of C satisfying the axioms:

(1) if f : c→ c′ is a morphism and s ∈ Cov(c′) then f ∗s ∈ Cov(c);
(2) let c be an object of C, s be a covering sieve of c and t be any sieve of c.

If for all object c′ in C and for all f ∈ s(c′,c) the sieve f ∗t is a covering
sieve then t is a covering sieve.

(3) the sieve Hom(−,c) is a covering sieve for all objects c of C.

Definition A.1.3. A site is a category Cwith a Grothendieck topology.

Example A.1.4. If X is a topological space then one can naturally construct a site.
We consider the category of open sets of X and the morphisms are the inclusions
of open sets. Given an open set U of X , the collection of covering sieves will be
given by all possible families of coverings of U by open sets (Ui)i∈I (in which case
the sieve is the subfunctor of Hom(−,c) selecting the i ∈ I).

Example A.1.5. The main example that we will consider and which is not based
on the previous example is the étale topology.

Let S be a scheme. We consider the category SchS of schemes over S. The
morphisms are given by étale maps X ′→ X over S. The covering sieves over X are
the families of étale morphisms which are surjective finite families of étale maps
(Xi→ X)i∈I (this is the so-called big étale site).

Here we use the fact that we will use the fact that we have fiber products to
define sheaves.

135
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Definition A.1.6. A sheaf over a site (C,Cov) is a contravariant functor F : C → Set
(or to any classical category) such that: for all c∈ C and cii∈I in Cov(c) the diagram

F(c)→
∏
i∈I

F(ci) ⇒
∏

i, j∈I2

F(ci×c c j)

is an equalizer.

A.2. Stacks

A.2.1. Groupoids. Let S be scheme. We denote by SchS the category of
schemes over S.

Definition A.2.1. A category over S is a category F with a contravariant functor
pF : F → SchS.

Let (F, pF ) be a category over S. We say that (F, pF ) is a groupoid over S if:
• if f : B′ → B is a morphism in SchS. If X is an object lying over B

then there exists a unique object f ∗X over B′ and a unique morphism
φ : f ∗(X)→ X such that pF (φ) = f ;
• if X ,X ′ and X ′′ are objects of F lying over B,B′ and B′′ respectively

and φ′ : X ′ → X , φ′′ : X ′′ → X and f : B′ → B′′ are morphism satisfy-
ing pF (φ′′) ◦ f = f ◦ pF (φ′) then there exists a unique φ : X ′→ X ′′ such
that f = pF (φ).

Remark A.2.2. In particular, if F is a groupoid over S and B is an S-scheme, then
we can define F(B) the subcategory of F of objects lying over B with morphism φ
such that pF (φ) = Id. The category FB is a groupoid.

Definition A.2.3. Let (F1, pF1) and (F2, pF2) be two groupoids over S. A morphism
of groupoids is a functor p : F1 → F2 such that pF2 ◦ p = pF1 . Let p,q be two
morphisms from F1 to F2, a 2-isomorphism is a transformation of functors from f
to g. We denote by Hom(F1,F2) the category of morphism from F1 to F2.

A morphism of groupoids is an isomorphism if it is an equivalence of category.

Remark A.2.4. An isomorphism p : F1→F2 need not to have an inverse. However
it has a quasi-inverse, i.e. an isomorphism q : F2→ F1 such that pq is isomorphic
to the functor IdF2 and qp isomorphic to IdF1 .

Example A.2.5. Let X be a scheme over S then the category of X-schemes is
a groupoid over S. In particular if X and Y are two S-schemes, then X ' Y as
S-scheme if and only if X and Y are isomorphic as groupoids over S.

Example A.2.6. Let X/S be a scheme and G/S a group scheme of finite type act-
ing on the left on X . We construct the category [X/G] whose objects are E → B
with B an X scheme and E is G-bundle. The morphisms are G equivariant mor-
phism [E ′→ B′]→ [E→ B] over X .

Let F,G and H be groupoids over S and f : F→G and h : H→G be morphisms
of groupoids. The fiber product F ×G H is the groupoid whose objects are triples
(x,y,ψ) where (x,y) ∈ F(B)×H(B) for a S-scheme B and ψ : f (x)→ h(y) is an
isomorphism in G(B). A morphism of triples (x,y,ψ) → (x′,y′,ψ′) is given by
morphism α : x→ x′ and β : y→ y′ satisfying ψ′ ◦ f (al pha) = h(β)◦ψ.



A.2. STACKS 137

Remark A.2.7. We have natural projections pF : F ×G H → F (same for H).
However note that the diagram

F×G H
pH //

pF

��

H

h
��

F
f
// G

is not necessarily commutative but there exists a natural transformation from f pF

to hpH .

A.2.2. Stacks. Let F be a groupoid over S. Let B be an S-scheme and X and
Y be objects in F(B). We define the contravariant functor IsoB(X ,Y ) : SchB→ Sets
which to a scheme f : B′→ B associates the set of isomorphism from f ∗X to f ∗Y .

Definition A.2.8. A stack is a groupoid over S such that

• the functor IsoB(X ,Y ) is a sheaf over SchB for the étale topology for all
objects B,X and Y .
• If {Bi→ B}i∈I is a covering family and Xi∈I is a collection of objects of

F(Bi) with choices of isomorphisms φi j : Xi×B B j → Bi×B X j satisfying
cocycles relations then there exists X in F(B) such that Xi = X ×B Bi and
inducing the φi j.

Definition A.2.9. Let F and G be stacks over S and f : F→G be a morphism. We
say that f is representable if for any map B→G where B is an S-scheme, the stack
B×G F is isomorphic to the stack of a scheme.

A.2.3. Deligne-Mumford stacks. In particular this definition allows to char-
acterize morphism of stacks.

Definition A.2.10. Let (P) be a property of maps of schemes stable under base
change (smooth, flat, étale, proper, seperated, surjective...). We say that a repre-
sentable map of stack f : F→G satisfies property (P) if for any scheme B, the map
B×G F → B satisfies the property (P).

Definition A.2.11. A stack F is said of Artin (respectively of Deligne-Mumford if:

• the diagonal F → F×F is representable and seperated;
• there exists a scheme U and a smooth surjective (respectively étale sur-

jective) morphism U → F .

The scheme U will be called an atlas for F .

Remark A.2.12. In particular one can see that the number of automorphism of
an object in a DM stack is finite while the automorphism group of an object in an
Artin stack can be a scheme.

Remark A.2.13. Let F be a Deligne-Mumford stack. Since there exists anétale
surjective map U → F with U a scheme, we can define the étale site of X as the
category Xét of schemes together with étale morphisms to X . Using Xét, we can gen-
eralise many concepts from scheme theory (such as quasi-coherent sheaves, vec-
tor bundles, cotangent sheaves, cotangent complexes, etc.) to Deligne-Mumford
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stacks. Artin stacks do not in general have a well-behaved étale site. The étale site
is replaced by the so-called lisse-étale site.

A.3. Moduli spaces of curves

Let g,n be integers such that 2g − 2 + n > 0. LetMg,n (respectivelyMg,n and
Mg,n) be the category of objects:

(π : C→ B,{σi : B→C}i≤n)

where B is a scheme over C and π is a flat family of smooth (respectively stable
and pre-stable) curves of genus g and the σi are sections in the smooth locus of C
and that do not intersect. Then the functor F :Mg,n→ SchC which maps a family
to its base makesMg,n into a groupoid over C.

Proposition A.3.1. The groupoids Mg,n and Mg,n are smooth DM stacks. The
groupoid Mg,n is a smooth Artin stack. All three stacks are of pure dimension
3g − 3 + n.

Remark A.3.2. The dimension of a DM stack is defined as the dimension of its
atlas while the dimension of an Artin stack is the dimension of its atlas minus the
relative dimension of the map.

Proposition A.3.3. The stackMg is irreducible for g≥ 2.

To prove this statement, Deligne and Mumford used the fact that every curve
of genus g is a ramified covering of CP1 of degree k> 0 with simple branch points
for large values of k. Thus for k large enough, we have a surjective map from a
dense open subset of Symb(CP1) toMg. The space Symb(CP1) is irreducible and
thus so isMg.

Proposition A.3.4. The stackMg,n is proper. The complementMg,n \Mg,n is a
normal crossing divisor.

Remark A.3.5. The properness ofMg,n is proved by using the valuative criterion.
Let C→ B be a family of curves over a smooth B and with singular fibers over a
locus of codimension 1 in B. Then C admits a model over B with stable fibers.
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Résumé. Nous construisons l’espace des différentielles stables : un espace des
modules de différentielles méromorphes avec des pôles d’ordres fixés. Cet espace
est un cône au dessus de l’espaceMg,n des courbes stables. Si l’ensemble de poles
est vide, il s’agit du fibré de Hodge. Nous introduisons l’anneau tautologique du
projectivisé de l’espace des différentielles stables par analogie avecMg,n.

L’espace des différentielles stables est stratifié en fonction des ordres des zéros
de la différentielle. Nous montrons que la classe de cohomologie Poincaré-duale de
chaque strate est tautologique et peut être calculée explicitement, ce qui constitue
le résultat principal de la thèse. Nous appliquons ces résultats pour calculer des
nombres de Hurwitz et pour prouver plusieurs identités dans le groupe de Picard
des strates.

Ensuite, nous nous intéressons aux espaces des modules des différentielles
d’ordre supérieur. Une courbe munie d’une k-différentielle holomorphe possède
un revêtement naturel de groupe de Galois Z/kZ. Le fibré de Hodge sur la courbe
revêtante se décompose en une somme directe de sous-fibrés en fonction du car-
actère de Z/kZ. Nous calculons la première classe de Chern de chacun de ces
sous-fibrés.

Un dernier chapitre sera consacré à l’exposé des liens conjecturaux entre les
classes des strates de différentielles, les espaces de courbes r-spin et les cycles de
double ramification.

Abstract. We construct the space of stable differentials: a moduli space of
meromorphic differentials with poles of fixed order. This space is a cone over the
moduli spaceMg,n of stable curves. If the set of poles is empty, then this cone is
the Hodge bundle. We introduce the tautological ring of the projectivized space of
stable differentials by analogy withMg,n.

The space of stable differentials is stratified according to the orders of zeros of
the differential. We show that the Poincaré-dual cohomology classes of these strata
are tautological and can be explicitly computed, this constitutes the main result of
this thesis. We apply this result to compute Hurwitz numbers and to show several
identities in the Picard group of the strata.

Then, we interest ourselves to moduli spaces of differentials of superior order.
A curve endowed with a k-differential carry a natural ramified covering of Galois
group Z/kZ. The Hodge bundle over the covering curve is decomposed into a
direct sum of sub-vector bundles according to the character of Z/kZ. We compute
the first Chern class of each of these sub-bundles.

A last chapter will be dedicated to the presentation of conjectural relations
between classes of strata of differentials, moduli of r-spin structures and double
ramification cycles.


