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Kashaev 1995: For every odd n, Kashaev introduces an “invariant”
Kn(M, L) of links L in 3-dimensional manifolds M.

Well-defined when M = S3 (Kashaev). Full invariance for any M
later proved by Baseilhac-Benedetti (2001)

Kashaev 1996: Handwavy arguments = conjecture

Jim 108 Kn(M, L)| = 5-volnyp (M — L)

Murakami-Murakami 1999: If J?(q) € Z[q,q '] is the
(normalized) n—th colored Jones polynomial of L C S3,

Kn(S3,L) = JP ()
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Perspective: the volume conjectures

Why interesting?
m combines two very different fields, and fosters interaction
between different branches of mathematics

m probably not as impactful on each field as originally
anticipated, but

m still pretty amazing. Example: A quantum invariant which is a
sum of 10139 terms (corresponding to states), many of which
are of the order of 103%: however, the sum is only of the order
of 10%2. The cancellations are not algebraic term-by-term, but
“on average”.
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LThe SLj—skein algebra and its representations

The SLy—skein algebra of a surface

For g € C*, the SLy—skein algebra of a surface S is
841, (S) = {C-linear comb. of framed links L C 5x[0,1]} /skein relation:

SL,—skein relations:

K =a)

] O:—(q+q_1) %)

In practice, pictures of knots drawn on the surface

Multiplication by superposition: If [L1], [L2] € Sng(S),
[L1] - [L2] = [L1 U L] where L1 C S x [0,4] and Lr C S x [3,1]
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g=1= K= +)(=X

= 841,,(5) can be seen as a deformation of the algebra SéLZ(S)
of regular functions on the SLy(C)—character variety

Xs1,(S) = {group hom. r: m1(S) — SLQ(C)}//SLQ(C)
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The SLy—skein algebra of a surface

X

g=1=—=1¢

= 841,,(5) can be seen as a deformation of the algebra S§L2(S)
of regular functions on the SLy(C)—character variety

Xs1,(S) = {group hom. r: m1(S) — SLQ(C)}//SLQ(C)

Proposition (Helling?)

For every algebra homomorphism p: S§L2(S ) — C, there exists a
unique r € Xsi,(S) such that

p([K]) = —Trace r(K)

for every knot K C S x [0, 1]
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The G—skein algebra of a surface

More generally, if G is a Lie group, with associated quantum group
Uq(g), the G—skein algebra SE(S) is

SE(M) = { generated by links L C M
colored by reps of Ug(g)

free C—vector space all relations between
/ tensor products of

representations of Ug(g)

When G = SLy = {d x d matrices with det = 1} and g generic,
Cautis-Kamnitzer-Morrison give explicit relations in terms of
colored trivalent graphs called webs

Remark: For the geometrically inclined, it may be better to replace
representations of the quantum group Ug(g) of the Lie algebra g
by co-representations of the quantum coordinate ring Oq4(G) of the
Lie group G. Geometers tend to have more intuition for Lie groups
than for Lie algebras
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The center of SL,—skein algebra for g generic

S oriented surface of finite topological type, possibly with
punctures

Theorem (Etingof?)

When q is not a root of unity, the center of Sg; (S) is generated
by simple loops P, C S x % going around the punctures v of S
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The center of SL,—skein algebra for ¢" =1

Tn(t) = n—th Chebyshev polynomial of the first type, defined by
Trace A" = T,(Trace A) for every A € SL,

Theorem (FB + Helen Wong)

When q" = 1 primitive with n odd and (q%)” = —1, thereis a
unique central Frobenius embedding
F: 5§L2(5) — 84,(5)
such that
F([K1)

= Ta(IK
for every simple closed curve K C S

1)
x 3 C S x[0,1]
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The center of SL,—skein algebra for ¢" =1

Tn(t) = n—th Chebyshev polynomial of the first type, defined by
Trace A" = T,(Trace A) for every A € SL,

Theorem (FB + Helen Wong)

When q" = 1 primitive with n odd and (q%)” = —1, thereis a
unique central Frobenius embedding
F: S§L2(5) — 84,(5)
such that
F([K]) = Ta([K])

for every simple closed curve K C S x 3 C S x [0,1]

Frohman-Kania-Bartoszyriska-Lé: The center of S (S) is
generated by the image F(S§; (S)) and the loops P, around the
punctures
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Invariants of representations of Sg; (S)

Corollary
If (q7)" = —1 with n odd and p: S&_(S) — End(V) is an
irreducible representation of Sg; (S), there exists a unique

r, € Xs1,(S) and weights p, € C associated to the punctures v of
S such that

m p([K]) = —Tracer,([K]) Idy for every simple closed curve
KcCSxicSx|01]

= p([Py]) = pyIdv for every simple loop P, going around the
puncture v

In addition, the puncture weights p,, € C are compatible with r in
the sense that Tp(p,) = —Tracer,(P,) for every puncture v

r, € Xs1,(S) is the classical shadow of the representation
p: 841, (S) = End(V)
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Classification of “most” representations of S (S)

Theorem (Frohman-Kania-Bartoszyriska-L&,
Ganev-Jordan-Safronov, Detcherry-Santharoubane)

Suppose (q%)” = —1 with n odd. For every smooth point

r € Xsi1,(S) and every system of puncture weights p, € C
compatible with r there exists, up to isomorphism, a unique
irreducible representation p: Sy ,(S) — End(V) whose classical
shadow and puncture invariants are r and the p,

In addition, dim V = n3¢=3tp

Remark. By Ganev-Jordan-Safronov and more recent results (FB
+ Higgins, Higgins, Z. Wang, H. K. Kim, L&, Karuo, ...), similar
properties hold, or should hold, for S§Ld(5)
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Volume conjecture for surface diffeomorphisms

Based on joint work with Helen Wong and Tian Yang
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Invariant SL,(C)—characters

S oriented surface of finite topological type, with genus g and
p = 0 punctures

A diffeomorphism ¢: S — S acts on the character variety Xsp,(S),
on the skein algebra S§L2(S), and on representations of the skein
algebra
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Invariant SL,(C)—characters

Fact. In the generic case where ¢ is pseudo-Anosov, it fixes many
smooth points of Xgr,,(S):
m The restriction(s) r'™P € Xs1,(S) to S of the monodromy
m1(My) — PSLy(C) of the unique hyperbolic metric of the
mapping torus

M, =5 [0.11/(x.1) ~ (¢(x).0)

c

v
m If S has p punctures, the fixed point set of the action of ¢ is

a smooth submanifold of complex dimension p near
P ¢ Xgp,(S)
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that T,(p,) = —Trace r([P,]) for every puncture v, there exists,
up to isomorphism, a unique irreducible representation

p: 8d1,(S) — End(V) whose classical shadow and puncture
weights are r and the p,
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Invariant representations of Sg; (S)

Recall. Suppose (q%)” = —1 with n odd. For every smooth point
r € Xsi,(S) and every system of puncture weights p, € C such
that T,(p,) = —Trace r([P,]) for every puncture v, there exists,
up to isomorphism, a unique irreducible representation

p: 8d1,(S) — End(V) whose classical shadow and puncture
weights are r and the p,

Suppose that we are given:
m a smooth character r € Xgr,,(S) that is fixed by the action of
the diffeomorphism ¢: S — S
m system of puncture weights p, € C that is compatible with r
in the sense that T,(p,) = —Trace r(P,) for every v, and
p—invariant in the sense that p,(,) = py for every v
Then, the theorem associates to this w—invariant data a
representation p: Sg (S) — End(V) which is g-invariant up to
isomorphism
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L One more volume conjecture

Invariant representations of Sg; (S)

The p~invariance of the representation p: S ,(S) — End(V)
means that there exists a linear isomorphism Al ., : V — V such
that

p(ell]) = A% p, 0 p([L]) © (AL, p,) " in End(V)

for every [L] € g1, (S)

p irreducible = AY ; . is unique up to conjugation and scalar
multiplication

Normalize so that detAd . p, =1

Proposition

!Trace AL r.p,| depends only on q with (q%)" = —1 and n odd, on
the p—invariant character r € Xs1,(S) and on the g—invariant
compatible puncture weights p, € C
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L One more volume conjecture

The Chebyshev equation

Compatibility equation. The puncture weights p, must satisfy
To(pv) = —Trace r([P.])
where P, is a loop around the puncture v

If X, and X\;! are the eigenvalues of r([P,]) € SL(C), the
solutions of the equation

Tn(py) = —Trace r([PV]) (= + )\;1)
are the numbers of the form

Pv = _)\5 _)\;
1

as \J franges over all n—roots of \,

1
n
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Geometric data.
m a diffeomorphism ¢: S — S
® a p—invariant character r € Xgp,(S)
m p-invariant logarithms 6, = log A, so that
Tracer([P,]) = ¢’ +e~% and Op(v) = O
For each n odd.

2mi

mEg=en andq%:e

just
n
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L One more volume conjecture

The volume conjecture for surface diffeomorphisms

Geometric data.
m a diffeomorphism ¢: S — S
® a p—invariant character r € Xgp,(S)
m p-invariant logarithms 6, = log A, so that
Tracer([P,]) = ¢’ +e~% and Op(v) = O
For each n odd.
= q:e% and q% —e7

. 1lg _1p
B puncture weights p, = —en’v — e~ 1"V

Conjecture

|

1
lim = log|TraceA? = — volpy, M
n odd—oco N & ‘ LP,F,PV‘ 47 VA S

where voly,y, M, is the volume of the hyperbolic metric of the
mapping torus M,
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The volume conjectures for surface diffeomorphisms

Suppose instead that

1 1
=0, 7mv,ne*;9v

en’v —q

my.

Pv=—q
for correction factors m, , € Z with My(y),n = Myn and
4Ttm, 4

lim
n odd— oo n

=y, € [0,27]

Conjecture (T. Pandey, K. H. Wong)

1
= vOlhyp My(cv)

where volyy, My (v ) is the volume of the hyperbolic cone
manifold obtained from M, by Dehn filling with cone angle

ay € [0,27] along each cusp of M, corresponding to the ¢—orbit
of the puncture v.

1
lim = log |TraceA?
n odd—oo N g ’ PPy



Asymptotics of quantum invariants

L One more volume conjecture

Numerical evidence

S = one-puncture torus
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S = one-puncture torus

70 Diff(S) = GLa(Z)
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S = one-puncture torus

mo Diff(§) = GL2(2Z) p=(31)
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Numerical evidence

S = one-puncture torus

mo Diff(§) = GL2(2Z) p=(31)

Pick some y—invariant character r € Xg1,(S) and logarithm 6, for
the eigenvalues et of r(P,) € SLy(C)
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Numerical evidence

S = one-puncture torus
mo Diff (S) = GLy(Z) v=1(3%)

Pick some y—invariant character r € Xg1,(S) and logarithm 6, for
the eigenvalues et of r(P,) € SLy(C)

. 1 _1
For every n odd and puncture weight p, = —en? — e 2% | the
machinery gives us an isomorphism A, , , : V — V with
dmV =n
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Numerical evidence

1
~log |Trace Ay, p,

20 40 60 80 100 120
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Numerical evidence

0.14

TOp ~ 02102253 _ 1.02278 4 0.715;9996

1
~log |Trace Ay, p,

3 o0 20
40.8161 656.735
- n3 + n*

20 40 0

n
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Numerical evidence

0.14

TOp ~ 02102253 _ 1.02278 4 0.715;9996

1
~log |Trace Ay, p,

100 120

_s0siel | 656135 19053

n

20 40 0

n
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Numerical evidence

1
~log |Trace Ay, p,

022f

018
0.16
0141 .
0 » w0 w w 00 “zu
Top ~ 0.212253 — 107278 | 0.715999 _ 408161 4 6%6.135 _; (212253

Bott.~ 0.212223 + 0.05?16988 _ 0.05325225 _ 11.3?52 + 295;.4163
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Numerical evidence

: 1

ol ~log |Trace Ay, p,
0.20

018

0.16

014 .

0 » w0 w w 00 "zu
Top ~ 0.212253 — 107278 | 0.715999 _ 408161 4 6%6.135 _; (212253

Bott.~ 0.212223 + 0.05?16988 o 0.05325225 . 11.55)52 + 295;.4163 —30.212223

n n
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Numerical evidence

1
~log |Trace Ay, p,

022f

014t 0

Top ~ 0.212253 —201‘0?78 N °~71-’;99960— 4°~831§1 + 65?:;35 0212253

n n

Bott.~ 0.212223 + 0.05?16988 o 0.05325225 . 11.55)52 + 295;.4163 —30.212223

n n
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Numerical evidence

1
~log |Trace Ay, p,

014t 0

20 40 60 80 100 120

Top ~ 0212253 - L7278 | Q.T15999 _ 208061 4 996735 _, ().212253

n n

Bott.~ 0.212223 + 0.05?16988 o 0.05325225 . 11.53552 + 295;.4163 —30.212223

n n

= volpyp(M,) & 0.212212
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Numerical evidence

An example with the same ¢: S — S, but a different p—invariant
character r € Xgr,,(S)

1
~log |Trace Ay, p,
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Part IV

How to compute
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The quantum Teichmiiller space

Recall. The SLo-skein algebra S (S) is a deformation of the
algebra of functions on the SLo(C)—character variety

X1, (S) = {group hom. r: m(S) — SLZ((C)} //SLa(C)
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The quantum Teichmiiller space

Recall. The SLo-skein algebra S (S) is a deformation of the
algebra of functions on the SLo(C)—character variety

X1, (S) = {group hom. r: m(S) — SLZ((C)} //SLa(C)

The quantum Teichmililler space is a deformation of the algebra of
functions on the enhanced PSL;(C)—character variety

on group hom. 7: m1(S) — PSLy(C) with data
XPS}ﬁQ(C)(S) = { //PSL(C)

of eigenlinec C? for 7(P,) at each puncture v
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The quantum Teichmiiller space

Recall. The SLo-skein algebra S (S) is a deformation of the
algebra of functions on the SLo(C)—character variety

X1, (S) = {group hom. r: m(S) — SLZ((C)} //SLa(C)

The quantum Teichmililler space is a deformation of the algebra of
functions on the enhanced PSL;(C)—character variety

N group hom. 7: m1(S) — PSLy(C) with data
XSS}EQ((C)(S) = {

Advantages / drawbacks

}// PSL,(C)

of eigenlinec C? for 7(P,) at each puncture v

m The skein algebra is very intrinsic, but hard to work with

m The quantum Teichmiiller space is a conceptual mess, but
easier to compute with
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The quantum Teichmiiller space

S = oriented surface of genus g with p > 1 punctures
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The quantum Teichmiiller space

S = oriented surface of genus g with p > 1 punctures

An ideal triangulation of S is a triangulation 7 with all vertices at
the punctures, with edges ey, e, ..., €g-6+3p
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The quantum Teichmiiller space

S = oriented surface of genus g with p > 1 punctures

An ideal triangulation of S is a triangulation 7 with all vertices at
the punctures, with edges ey, e, ..., €g-6+3p

Thurston used ideal triangulations to construct shearbend
. . e h
coordinates for the enhanced character variety Aggr (C)(S)
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The quantum Teichmiiller space

S = oriented surface of genus g with p > 1 punctures

An ideal triangulation of S is a triangulation 7 with all vertices at
the punctures, with edges ey, e, ..., €g-6+3p

Thurston used ideal triangulations to construct shearbend
. . e h
coordinates for the enhanced character variety Aggr (C)(S)

There is one coordinate x; € C* for each edge of the ideal
triangulation 7.

Each x; is a crossratio of eigenlines associated to the punctures
of S
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The quantum Teichmiiller space

The Chekhov-Fock algebra of the ideal triangulation 7 is the
Laurent polynomial algebra

CFI = C[X{t, X5, X6g 6435l
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The quantum Teichmiiller space

The Chekhov-Fock algebra of the ideal triangulation 7 is the
Laurent polynomial algebra

CFI=CIX;{ X X g3l

where X; X; = q%ci XX with

Efj:ﬂ/\—ﬁﬂ
e €

&
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The quantum Teichmiiller space

—

CFI = fraction algebra of CF?
Theorem (Chekhov-Fock + H. Bai)

Up to uniform rescaling of the X;, there exists a unique family of
algebra isomorphisms
q . q o =
Vi . CFl — CF?
as T, T range over all ideal triangulations of S
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The quantum Teichmiiller space

C/]-?ﬁ = fraction algebra of CF?

Theorem (Chekhov-Fock + H. Bai)

Up to uniform rescaling of the X;, there exists a unique family of
algebra isomorphisms

Ve, CF!, — CF?
as T, T’ range over all ideal triangulations of S, such that

w’?’T” - wg’r’ o \U’?"T”

for any three ideal triangulations 7, 7', 7"
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The quantum Teichmiiller space

Fundamental case: the diagonal exchange

X1 if i =i
Xi(1+q71X;) if i=iioriy
if i =1ioris

Xi if i # o, i1, 02,03, 04
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The quantum Teichmiiller space

The quantum Teichmiiller space T9(S) of S is the family of the
Chekhov-Fock algebras CF? and of the quantum coordinate
changes V7
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The quantum Teichmiiller space

The quantum Teichmiiller space T9(S) of S is the family of the
Chekhov-Fock algebras CF? and of the quantum coordinate
changes V7

When g = 1, this corresponds to Thurston's shearbend coordinates
for the enhanced character variety Xf,‘sli((c)(S), consisting of

homomorphisms r: m1(S) — PSLy(C) enhanced with the data of
an eigenline for r(P,) € PSLy(C) at each puncture v
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Representations of the quantum Teichmiiller space

A representation p: T9(S) — End(V) of the quantum Teichmiiller
space is a family of representations j.: CF? — End(V), as 7
ranges over all ideal triangulations,
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Representations of the quantum Teichmiiller space

A representation p: T9(S) — End(V) of the quantum Teichmiiller
space is a family of representations j.: CF? — End(V), as 7
ranges over all ideal triangulations, that are compatible with the

quantum coordinate changes V7 ,: CF?, — CF3d
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Representations of the quantum Teichmiiller space

A representation p: T9(S) — End(V) of the quantum Teichmiiller
space is a family of representations j.: CF? — End(V), as 7
ranges over all ideal triangulations, that are compatible with the

quantum coordinate changes V7 ,: CF?, — CF9 in the sense that
F(X') = 7 (W9, (X")

for every X' € CF?,
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Representations of the quantum Teichmiiller space

A representation p: T9(S) — End(V) of the quantum Teichmiiller
space is a family of representations j.: CF? — End(V), as 7
ranges over all ideal triangulations, that are compatible with the

quantum coordinate changes V7 ,: CF?, — CF9 in the sense that
F(X') = 7 (W9, (X")

for every X' € CF?, , whenever W7 _(X!) = P/Q = Q'\P' € CFY
with P, Q, P, Q" € CF?
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Representations of the quantum Teichmiiller space

A representation p: T9(S) — End(V) of the quantum Teichmiiller
space is a family of representations j.: CF? — End(V), as 7
ranges over all ideal triangulations, that are compatible with the

quantum coordinate changes V7 ,: CF?, — CFJ in the sense that

pr(X") = pr (VI (X)) = 5:(P) 0 5 (@) = p-(Q) o 5 (P)

for every X' € CF?, , whenever W7 _(X!) = P/Q = Q'\P' € CFY
with P, Q, P, Q" € CF?
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Representations of the quantum Teichmiiller space

A representation p: T9(S) — End(V) of the quantum Teichmiiller
space is a family of representations j.: CF? — End(V), as 7
ranges over all ideal triangulations, that are compatible with the

quantum coordinate changes V7 ,: CF?, — CFJ in the sense that

pr(X") = pr (VI (X)) = 5:(P) 0 5 (@) = p-(Q) o 5 (P)

for every X' € CF?, , whenever W7 _(X!) = P/Q = Q'\P' € CFY
with P, Q, P/, Q" € CFJ and p-(Q), p-(Q") € End(V) invertible
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Representations of the quantum Teichmiiller space

Recall:

Theorem (FB + Helen Wong 2016)

When q" = 1 primitive with n odd and (q%)” = —1, there is a
unique central Frobenius embedding
F: S§L2(5) = 8§1,(5)

such that

F(IK]) = Tu([K])

for every simple closed curve K C S x % C S x[0,1]

Frohman-Kania-Bartoszyriska-L&: The center of S (S) is
generated by the image F(S§L2(S)) and the loops P, around the
punctures
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Representations of the quantum Teichmiiller space

Theorem (FB + Xiaobo Liu 2007)

When q" = 1 primitive with n odd, there is a central Frobenius
embedding

F,: CFl — CcF9
defined F(X;) = X! for every generator X;. It is compatible with
the quantum coordinate changes \U;’T, in the sense that

for every ideal triangulations T, 7' of S
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Representations of the quantum Teichmiiller space

Theorem (FB + Xiaobo Liu 2007)

When q" = 1 primitive with n odd, there is a central Frobenius
embedding

F,: CFl — CcF9
defined F(X;) = X! for every generator X;. It is compatible with
the quantum coordinate changes \U;’T, in the sense that

for every ideal triangulations T, 7' of S

Complement. The center of CF? is generated by the image
F(CFi) and by elements

H,=gq Zk</5fkf/X,-1X,-2 X

associated to the punctures v, with e;, e, ..., €, the edges
ending at v
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Representations of the quantum Teichmiiller space

Recall.

Theorem
Suppose that q" = 1 primitive with n odd and (q%)” =-1.If
p: 841,(S) — End(V) is an irreducible representation of S (S),
there exists a unique r, € Xs1,(S) and puncture weights p, € C
compatible with r such that
m p([K]) = —Tracer,([K]) Idy for every simple closed curve
KcSxicSx|[o01]
| p([PV]) = py Id\, for every simple loop P, going around the
puncture v
In addition, p: Sg; (S) — End(V) is uniquely determined by this
data if r is a smooth point of the character variety Xsi,(S)
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Representations of the quantum Teichmiiller space

Theorem (FB + Xiaobo Liu 2007)

When q" = 1 primitive with n odd, every irreducible representation
p={pr: CFl — End(V); 7 ideal triangulation}
of the quantum Teichmiiller space determines
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Representations of the quantum Teichmiiller space

Theorem (FB + Xiaobo Liu 2007)

When q" = 1 primitive with n odd, every irreducible representation
p={pr: CFl — End(V); 7 ideal triangulation}
of the quantum Teichmiiller space determines

m an enhanced character T € XSg%Z(C)(S) such that, for every edge e
of the ideal triangulation T, p-(X") = x;Idy for the shearbend
coordinate x; of r along the edge e;
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Representations of the quantum Teichmiiller space

Theorem (FB + Xiaobo Liu 2007)

When q" = 1 primitive with n odd, every irreducible representation
p={pr: CFl — End(V); 7 ideal triangulation}
of the quantum Teichmiiller space determines

m an enhanced character T € XSg%Z(C)(S) such that, for every edge e
of the ideal triangulation T, p-(X") = x;Idy for the shearbend
coordinate x; of r along the edge e;

m a puncture invariant h, € C* associated to each puncture v, such
that p,(H,) = h,Idy and h7 = \2 for the eigenvalue \, of
7(P,) € PSLy(C) corresponding to the preferred eigenline given by
the enhancement
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Representations of the quantum Teichmiiller space

Theorem (FB + Xiaobo Liu 2007)

When q" = 1 primitive with n odd, every irreducible representation
p={pr: CFl — End(V); 7 ideal triangulation}
of the quantum Teichmiiller space determines

m an enhanced character T € XSg%Z(C)(S) such that, for every edge e

of the ideal triangulation T, p-(X") = x;Idy for the shearbend
coordinate x; of r along the edge e;

m a puncture invariant h, € C* associated to each puncture v, such
that p,(H,) = h,Idy and h7 = \2 for the eigenvalue \, of
7(P,) € PSLy(C) corresponding to the preferred eigenline given by
the enhancement

Conversely, two representations of the quantum Teichmiiller space are
isomorphic if and only if they have the same classical shadow

re ng}ﬁz(C)_(S) and puncture inv_ariants h, € C*, and every data as
above is realized by a representation
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Quantum Teichmiiller invariants of surface diffeomorphisms

A diffeomorphism ¢: S — S induces a preferred isomorphism

. CFI—CF?

q
o, o(7)

(7)

sending the generators X; of CFJ associated to the edge e; of T to
the generator X! of C]-'Z(T) associated to the edge e/ = ¢(ej) of

o(7)
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Quantum Teichmiiller invariants of surface diffeomorphisms

A diffeomorphism ¢: S — S induces a preferred isomorphism

¢Z 1 CFl—CF?

(7) e(7)

sending the generators X; of CFJ associated to the edge e; of T to
the generator X! of C]-'Z(T) associated to the edge e/ = ¢(ej) of
o(7)

This defines an action of ¢ on the quantum Teichmiiller space
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Quantum Teichmiiller invariants of surface diffeomorphisms

Consider a diffeomorphism p: S — S
Suppose that we are given:
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Quantum Teichmiiller invariants of surface diffeomorphisms

Consider a diffeomorphism p: S — S
Suppose that we are given:

m an enhanced character 7 € Xf’)g}iz((c)(S) that is fixed by the
action of ¢
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Quantum Teichmiiller invariants of surface diffeomorphisms

Consider a diffeomorphism p: S — S
Suppose that we are given:
m an enhanced character 7 € Xf’)g}iz((c)(S) that is fixed by the
action of ¢
m system of puncture weights h, € C* that is compatible with r
and @—invariant
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Quantum Teichmiiller invariants of surface diffeomorphisms

Consider a diffeomorphism p: S — S
Suppose that we are given:

m an enhanced character 7 € Xf’)g}iz((c)(S) that is fixed by the
action of ¢

m system of puncture weights h, € C* that is compatible with r
and @—invariant

Then, the theorem associates to this p—invariant data an
irreducible representation

p={p-: CF? — End(V); 7 ideal triangulation}
of the quantum Teichmiiller space which is ¢—invariant up to
isomorphism



Asymptotics of quantum invariants

L How to compute

Quantum Teichmiiller invariants of surface diffeomorphisms

A representation

p={pr: CFI — End(V); 7 ideal triangulation}
of the quantum Teichmiiller space is ¢—invariant up to isomorphism
if there exists an isomorphism /_\go,F,hv: V>V
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Quantum Teichmiiller invariants of surface diffeomorphisms

A representation

p={pr: CFI — End(V); 7 ideal triangulation}
of the quantum Teichmiiller space is ¢—invariant up to isomorphism
if there exists an isomorphism /_\go,F,hv: V — V such that

Por) © DLy (X) = ALy 0 5r(X) o AL, 1 € End(V)

for every X € CFI(S), where <D1 i CFl— C]—"Z(T) induced by ¢

(1)
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Quantum Teichmiiller invariants of surface diffeomorphisms

A representation

p={pr: CFI — End(V); 7 ideal triangulation}
of the quantum Teichmiiller space is ¢—invariant up to isomorphism
if there exists an isomorphism /_\%ﬁhv: V — V such that

Por) © DLy (X) = ALy 0 5r(X) o AL, 1 € End(V)

for every X € CFI(S), where <D1

: A4 _
Normalize so that det /\%F,hv =1

(r)r: CFZ— C]—"Z(T) induced by ¢

Proposition

‘Trace /_\Z},F‘ depends only on q with q" =1 and n odd, on the

enhanced p—invariant character r € Xﬁgi(@(S) and on the

p—invariant compatible puncture weights h, € C*
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Comparison

¢: S — Sand (q2)" = 1 with n odd



Asymptotics of quantum invariants

L How to compute

Comparison

¢: S — S and (¢q2)" = 1 with n odd
Representations of the skein algebra. Given
m a p—invariant SLy(C)—character r € Xgr,(S)
m —invariant puncture weights p, € C compatible with r

then the machinery spits out an isomorphism AJ, . : V — V with
dim V = n3&-3+p



Asymptotics of quantum invariants

L How to compute

Comparison

¢: S — S and (¢q2)" = 1 with n odd
Representations of the skein algebra. Given
m a p—invariant SLy(C)—character r € Xgr,(S)
m —invariant puncture weights p, € C compatible with r
then the machinery spits out an isomorphism AJ, . : V — V with
dim V = 383+
Representations of the quantum Teichmdller space. Given
® a p—invariant enhanced PSLy(C)—character 7 € Xf}glﬁz((c)(S)
m —invariant puncture weights h, € C* compatible with 7

then the machinery spits out an isomorphism /_\Z b V — V with
dim V = n3&-3+tp
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Comparison

Proposition

Suppose that the PSLy(C)—character underlying ¥ € X;g}ﬁ2(c)(5 )

is the reduction of the SLa(C)—character r € Xs1,(S), and that
1 1

pv = hZ + h for every puncture v. Then, there is an isomorphism

V — V conjugating AL, p, to a scalar multiple of /_\Z,F,hv
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Comparison

Proposition

Suppose that the PSLy(C)—character underlying F € X;rsllﬁ2(c)(5 )

is the reduction of the SLy(C)—character r € Xs1,(S), and that
1 1

pv = hZ + h for every puncture v. Then, there is an isomorphism
V — V conjugating N, ; p, to a scalar multiple of AZ,F,hv

Proof with a small lie.

Earlier work of FB 4+ H. Wong = for every ideal triangulation 7,
there is a quantum trace embedding S¢; (S) — CF{ that is
compatible with the Chekhov-Fock coordinate changes WﬁT,
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Comparison

Proposition

Suppose that the PSLy(C)—character underlying F € X;rsllﬁ2(c)(5 )

is the reduction of the SLy(C)—character r € Xs1,(S), and that
1 1

pv = hZ + h for every puncture v. Then, there is an isomorphism
V — V conjugating N, ; p, to a scalar multiple of AZ,F,hv

Proof with a small lie.

Earlier work of FB 4+ H. Wong = for every ideal triangulation 7,
there is a quantum trace embedding S¢; (S) — CF{ that is
compatible with the Chekhov-Fock coordinate changes WﬁT,

= every representation p of the quantum Teichmuiller space
restricts to a representation p of the skein algebra Sg; (S).
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Comparison

Proposition

PSL>

is the reduction of the SLy(C)—character r € Xs1,(S), and that
1 1

pv = hZ + h for every puncture v. Then, there is an isomorphism
V — V conjugating N, ; p, to a scalar multiple of AZ,F,hv

Suppose that the PSLy(C)—character underlying ¥ € XS} (C)(S)

Proof with a small lie.

Earlier work of FB 4+ H. Wong = for every ideal triangulation 7,
there is a quantum trace embedding S¢; (S) — CF{ that is
compatible with the Chekhov-Fock coordinate changes WﬁT,

= every representation p of the quantum Teichmuiller space
restricts to a representation p of the skein algebra Sg; (S).

If /_\Z,F,hv conjugates p to its image under ¢, it also conjugates p to
its image under ¢ [
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Comparison

The small lie. Because of the difference between SLy(C) and
PSL,(C), these are a few sign issues to be resolved

Technical advantage of the quantum Teichmiiller space. The
representation theory is completely explicit
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Computing /\Z,F,hv

To compute the isomorphism /_\Z,F,hv' connect the ideal
triangulation 7 to ¢(7) by as sequence of ideal triangulations
T =170, T1, T2, --., Tky = ©(7) where each 7y is obtained from
Tk+1- | hen:
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Computing /\Z,F,hv

To compute the isomorphism /_\Z,F,hv' connect the ideal
triangulation 7 to ¢(7) by as sequence of ideal triangulations
T =170, T1, T2, --., Tky = ©(7) where each 7y is obtained from
Tk+1- | hen:

g _ wa q q
= wT(p(T) =VinoWano---o wTkO—lTko
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Computing /\Z,F,hv

To compute the isomorphism /_\Z 7 p,o connect the ideal
triangulation 7 to ¢(7) by as sequence of ideal triangulations
T =170, T1, T2, --., Tky = ©(7) where each 7y is obtained from
Tk+1- | hen:

= WZ@(T) = wgoﬁ o \U%TQ 0--0 wgko—ﬂko

m the g—invariant enhanced character 7 € ng}ﬁz(c)(S)
determines a shearbend parameter for each edge of each 7,
and the edge weight of the edge e; of 79 = 7 is the same as
that of the edge (&) of 74, = ¢(7)
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Computing /\Z,F,hv

To compute the isomorphism /_\Z 7 p,o connect the ideal
triangulation 7 to ¢(7) by as sequence of ideal triangulations
T =170, T1, T2, --., Tky = ©(7) where each 7y is obtained from
Tk+1- | hen:

= WZ@(T) = wgoﬁ o \U%TQ 0--0 wgko—ﬂko

m the g—invariant enhanced character 7 € ng}ﬁz(c)(S)
determines a shearbend parameter for each edge of each 7,
and the edge weight of the edge e; of 79 = 7 is the same as
that of the edge (&) of 74, = ¢(7)

m these edge weights and the puncture weights h, determine
representations pi: CF? — End(Vj) such that each py is
isomorphic to px_1 0 W, . by an isomorphism
/_\k: Vk — Vk—l



Asymptotics of quantum invariants

L How to compute

Computing /\Z,F,hv

To compute the isomorphism /_\Z 7 p,o connect the ideal
triangulation 7 to ¢(7) by as sequence of ideal triangulations
T =170, T1, T2, --., Tky = ©(7) where each 7y is obtained from
Tk+1- | hen:

= WZ@(T) = wgoﬁ o \U%TQ 0--0 wgko—ﬂko

m the g—invariant enhanced character 7 € ng}ﬁz(c)(S)
determines a shearbend parameter for each edge of each 7,
and the edge weight of the edge e; of 79 = 7 is the same as
that of the edge (&) of 74, = ¢(7)

m these edge weights and the puncture weights h, determine
representations pi: CF? — End(Vj) such that each py is
isomorphic to px_1 0 W, . by an isomorphism
/_\k: Vk — Vk—l

m can take /_\Z:,F,hv =AoNyo--olg
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S = one-puncture torus 7o Diff 7 (S) = SL(Z)
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Example: the one-puncture torus

S = one-puncture torus 7o Diff 7 (S) = SL(Z)

Fact. Every ¢ € SLy(Z) is conjugate to £ 0@y 0--- 0y, where
each i isequalto L= (§1)or R=(19)
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L How to compute

Example: the one-puncture torus

S = one-puncture torus 7o Diff 7 (S) = SL(Z)

Fact. Every ¢ € SLy(Z) is conjugate to £ 0@y 0--- 0y, where
each i isequalto L= (§1)or R=(19)

Can assume ¢ = @1 0@ 00y,
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L How to compute

Example: the one-puncture torus

S = one-puncture torus 7o Diff 7 (S) = SL(Z)
Fact. Every ¢ € SLy(Z) is conjugate to £ 0@y 0--- 0y, where
each i isequalto L= (§1)or R=(19)

Can assume ¢ = @1 0@ 00y,

Get a sequence of ideal triangulations 1o, 71, 7, ..., Tk, = ¢(70),
with

Tk = P10 P20 0 (7o) :
such that each 7 is obtained from 74_; by a diagonal exchange
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Example: the one-puncture torus

The formulas involve the Faddeev-Kashaev discrete quantum
dilogarithm
i
QDL (u,v|i)=v"" H(l + ug= ¥t
j=1
defined for g, u, v € C and i € Z with ¢" and v" =1+ u"
It is n—periodic, namely QDLY(u, v |i+ n) = QDL (u, v | i)
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L How to compute

Example: the one-puncture torus

The formulas involve the Faddeev-Kashaev discrete quantum
dilogarithm
;
QDL (u,v|i)=v"" H(l + ug= ¥t
j=1
defined for g, u, v € C and i € Z with ¢" and v" =1+ u"
It is n—periodic, namely QDLY(u, v |i+ n) = QDL (u, v | i)
Also,

n
D(u) = HQDL"(u, Vi)
i=1
n
=(1+u")" T H(l 4 ug Ly
j=1
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L How to compute

Example: the one-puncture torus

n ko
3" [ QDL(en% en"x | 2i)

il, I‘2,..., ik():l k=1
kg & K ..
qZkO:]_ ’E(€k+5k+1+2)—4 Zk0:1 Ek+11klk+1

. | —e1lg—mg+ng -
q<’-:1/011+710 5Ly

where g, = -1 !f Pk =L , Where the quantities Uy, Vi, € C
+1 if op =R.

are determined by careful choices of logarithms for the shearbend

edge weights of 7 € X;glﬁz(c)(S), and where Iy, mg, ng € Z are

correction terms for the lack of periodicity of these logarithms
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Example: the one-puncture torus

Recall. S = one-puncture torus p:5—=S5
¢ € mo Diff t(S) = SL(Z)

© = 10p20--- 0K Where each ¢y is equal to L = (}1) or
R=(19)
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Example: the one-puncture torus

We are interested in the growth rate of the modulus of

1
q
Trace /\% Fhy = T
n# I | Da(ert)
n ko
> TTapuseitn e 2i)
i1y 02,0y kg =1 k=1
qZ:O:l i2(ek+ery1+2)—4 Z:ozl Ekt1ikikt1
q51l0i1+ 7511072m0+no iko
-1 ifer=1L " .
where g, = {—i—l i Pk R where the quantities Uy, V) € C, with
IT Q) = .

eVs =14 eY, are determined by careful choices of logarithms for the
shearbend edge weights of 7 € XSIS‘}L’ ((C)(S), and where ly, mg, ng € Z are
correction terms for the lack of perlodlcity of these logarithms
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Example: the one-puncture torus

QDL is the Faddeev-Kashaev discrete quantum dilogarithm
QDLI(u, v [ i) = v [Tj=y (1 4+ ug=%*1)
defined for u, v e Cwith v’ =14+ u" and i € Z

It is n—periodic, namely QDL (u, v |i+ n) = QDL (u, v | )
Also,

n
D(u) = [ QDL v | )
i=1
n
_ (1 + un)—%1 H(l + uq—2j+1)n—j+1‘
j=1
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Example: the one-puncture torus

2mi

Let U € C be given, with eV # —1. For every odd n, set q =en .

Then,
1
1 U+mi |4
. 1 n Imu | cosh =1
dm |Do(er)|" = 2% |t
n=1mod 4 cosh =
1
1 U—|—7r1 5
) TN mu |sinh
IL>m ‘Dq(enu)‘ — 2 ax ﬁ
n o0
n=3mod 4 sinh 4

Proof
Undergraduate math + brute force O
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Example: the one-puncture torus

Therefore, we only need to understand the asymptotics of the sum

n ko
So= Y JIQDLI(er% en" | 2i)

i1y 024y ik0:1 k=1
ko K ..
qzkozl iF(exter1+2) =430, enraininn

. —e1lg—mo+ng -
51’0’1+%’k0

q
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The quantum dilogarithms

Recall that, for g" = 1, the discrete quantum dilogarithm of
Faddeev-Kashaev is

i
QDL (u,v|i)=v"" H(l + ug= ¥t
j=1

defined for u, v e Cwith v =1+u"and i € Z
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The quantum dilogarithms

For A>0and z € C with —* < Rez < 7+ %, the small
continuous quantum dilogar/thm of Faddeev is

1222 — 127z + 272 — w2h2
112( )= 12

4o ,h/+°° sinh(2z —m)t ~ 2z—m dt
™ 0 2tsinh(wt)sinh(wht)  2m2ht2 '

where the integrand of the integral continuously extends to

[0, +o0[ by taking the value (zz_ﬂ)(‘lf;;fgz_ﬂ%z) at t = 0.
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The quantum dilogarithms

For A>0and z € C with —* < Rez < 7+ %, the small
continuous quantum dilogar/thm of Faddeev is

1222 — 127z + 272 — w2h2
112( )= 12

oo sinh(2z — 7)t 27— 1
2mih - dt.
+ 27 /0 <2tsinh(7rt)sinh(7rht) 27r2ht2>

where the integrand of the integral continuously extends to

[0, +o0[ by taking the value (zz_ﬂ)(‘lf;;fgz_ﬂ%z) at t = 0.

The big continuous quantum dilogarithm is

Lil(z) = ezwi2(2)
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The quantum dilogarithms

The big quantum dilogarithm function Li%(z) has a unique
meromorphic extension to the plane C, with poles all contained in
|—00, 0[ and zeros all contained in |m, oo, such that

Lik(z 4 wh) = (1 — 22T 711l (2)

Corollary

2mi 1
Ifg=en, h:% and u = enY then

. _i
QDL (u,v|j) = e™n" ——5
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The sum in analytic form

Recall. We are interested in the asymptotics of

ki . ki ..
qZkO:l ’£(5k+5k+1+2)*4 Ekozl Ek+11klk+1

. | —e1lg—mo+ng -
e1lpi + —10570=0

Iko

q
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The sum in analytic form

Recall. We are interested in the asymptotics of

So= Y [ QDLI(en%, en ¥ |2i)

ki . ki ..
qZkO:l ’£(5k+5k+1+2)*4 Ekozl Ek+11klk+1

. | —e1lg—mo+ng -
e1lpi + —10570=0

Iko

q

n

_ 2w 27h 27rik0 n 2wy 2mi 27rik0
= g g(—n, IR )exp an(gn’ n vttty )

i1y 0250y iy =1
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The sum in analytic form

with
ko )
fon,02, . o) = D N5 (5 = 2 + 5 Ui — 20x)
k=1
ko 2 ko
= (5 - T4 A U) — 2D (ek +erir +2)af
k=1 k=1
ko
+825k+1akak+1
k=1

£1lp— g+ 7 :
g(o1,00,..., o) H e~ = Ykexp (51/00411 + %a%l)

. 2mi
and since g =e™n



Asymptotics of quantum invariants

LAnalytic techniques

The sum in analytic form

For every z with0 < Rez < mash — 0
2 .
li5 (2) = lix(e*?) + O(%)

where liy is the classical dilogarithm

1m@:A”%“_”ﬁ

t

In addition, the convergence is uniform on compact subsets of the
strip {z € C;0 < Rez < 7}
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The sum in analytic form

Therefore, as n — oo, fn(al,az, .. .,ako) — fxo (al,az, - ,ako)
with

ko
foo (al, ag, ... ,Oéko) = Zliz (—e_4iak) + ko%
k=1

ko ko

exteki1+2 2
—4 § “—="—=a; +8 E Ek+10k 41
k=1 k=1



Asymptotics of quantum invariants

LAnalytic techniques

The sum in analytic form

Therefore, as n — oo, fn(al,az, .. .,ozko) — fxo (al,az, - ,ako)
with

ko
. —4i 2
foo(al,ag,...,ako) = g lip (—e 10"‘) + kols
k=1
ko kO
ektekt1+2 2
—4 § S + 8 E EkF10k k41

k=1 k=1

ko
= Zliz (—e M%) + Q(a, az, . .., a)
k=1

for some quadratic function Q(al,ag, ey ako)
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Approximate discrete sum by integral

We want the asymptotics of

n
_ Z 2wy 2mi 2y, n 2y 2mi 27y,
S”_ g( n17 nl""’ no)exp(47rif"( nl’ nl""’ no))

i1, 025, iy =1

with fn(al,az, . . ,ako) — foo(al,ag, .. ,ako)
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Approximate discrete sum by integral

We want the asymptotics of

n
_ Z 2wy 2mi 2y, n 2y 2mi 27y,
S”_ g( n17 nl""’ no)exp(47rif"( nl’ nl""’ no))

i1, 025, iy =1

with fn(al,az, . . ,ako) — foo(al,ag, .. ,ako)

Step 1. Riemann sum approximation

k
Sn% (2';_) 0/ g(al,ag,...,ako)
[0,27]%0

exp (ﬁfoo(ozl, s, ... ,ako)) dajday ... day,
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The stationary phase method

Step 2. Well-known principle in mathematics/physics

K
S, ~ (i) 0/ glar,an, ..., ak)
[0,27]%0

exp (ﬁfoo(al, s, ... ,ako)) dajdag ... day,

~ (3)" =5 g(<) e (i(0)

n?2

for some complex critical point ¢ of fy
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Search for critical points

The search for a complex critical point of
o4
foo(al,az,...,ako Zhg lak +Q(a1,a2,...,ako)

is very similar to classical techniques (Casson, Rivin,
Neumann-Zagier, Yoshida) to explicitly find the hyperbolic metric
on the mapping torus M,
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Search for critical points

The search for a complex critical point of
o4
foo(al,az,...,ako Zhg lak +Q(a1,a2,...,ako)

is very similar to classical techniques (Casson, Rivin,
Neumann-Zagier, Yoshida) to explicitly find the hyperbolic metric
on the mapping torus M, and will give

|Sn| & constant n ? exp (2= volyyp M)

which is what we wanted
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Except
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Except

This is all wrong!!
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Approximate discrete sum by integral

Step 1. Riemann sum approximation

n
_ Z 2wy 2mwi 2y, n 2miy 2mi 2m iy,
Sn— g( n17 n17"'7 no)exp<47rifn( n17 nla“'u no))

i, 0250y iy =1

ki
~ (i) O/ g(al,OZQ,...,O[kO)
[0,27]%0

exp (ﬁfm(al, g, ... ,ako)) dOdl dOé2 NN dako

since fn(Oél,Oéz,... ,ako) — foo(al,az,... ,ako)
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Approximate discrete sum by integral

Step 1. Riemann sum approximation

n
_ Z 2wy 2mwi 2y, n 2miy 2mi 2m iy,
Sn— g( n17 n17"'7 no)exp<47rifn( n17 nla"'u no))

i, 0250y iy =1

ki
~ (i) O/ g(al,OZQ,...,O[kO)
[0,27]%0

exp (ﬁfm(al, g, ... ,ako)) dOdl dOé2 NN dako

since fn(Oél,Oéz,... ,ako) — foo(al,az,... ,ako)

What about error approximation?
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Approximate discrete sum by integral

Step 1. Riemann sum approximation

n
_ Z 2wy 2mwi 2y, n 2miy 2mi 2m iy,
Sn— g( n17 n17"'7 no)exp<47rifn( n17 nla“'u no))

i, 0250y iy =1

ki
~ (i) O/ g(al,OZQ,...,O[kO)
[0,27]%0

exp (ﬁfm(al, g, ... ,ako)) dOdl dOé2 NN dako

since fn(Oél, ag, ... ,ako) — foo (al, ag, ... ,ako)
What about error approximation?

foo (al, ao, ... ,Ozko) = Ziozl lip (—e_4ia’<) + Q(Oq, g, ..., ako)
for Q(al,ag, e ,ako) quadratic
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Toy model

So=Y exp (5 F(2L)) with f(a) = lip (¢) + 202
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Toy model

Sn = exp (g (%)) with £(a) = liz () + 207

j=1
Plot the terms exp (2 f (%))

[ ]
[ ]
[ ]
[ ] [
[ ]
o @®
% e ettt 900ty
[ ° . R
[ ]
[ ]
[ ]
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Toy model
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Toy model

Sn = exp (g (%)) with £(a) = liz () + 207

Plot the terms exp ;% f( )) and the function exp( 72 f(c)) exp(—nai)

jmu/\v/\ e .@vﬂvf\vﬂv T \){\uﬂﬁ ——
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Toy model

Sn = exp (g (%)) with £(a) = liz () + 207

Plot the terms exp (ﬁf(?)) and the function exp( ;% f())exp(—2nai)

:UAMM e,
kil |
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Toy model

So=Y exp (5 F(2L)) with f(a) = lip (¢) + 202

Plot the terms exp (#f(?)) and the function exp( ;% f())exp(—3nai)
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Toy model

So=Y exp (5 F(2L)) with f(a) = lip (¢) + 202

Plot the terms exp (#f(zﬂj)) and the function

! 25
= Z exp (7% f(c)) exp(—mnai)

* m=—24
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The Poisson Summation Formula

If h: R — R is 2w—periodic, continuous, and a little regular

Zh<2”)—n Z h(mn) Z /%h(a —mnad gy

m=—00 m=—00
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The Poisson Summation Formula

If h: R — R is 2w—periodic, continuous, and a little regular

Zh<2”)—n Z h(mn) Z /%h(a —mnad gy

m=—00 m=—00

Problem

The function h(a) = exp (72 f(a)) = exp <4mh2 (e') + ’;%i) is

not 2m—periodic, only at the points of the form a = 2%1
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The Poisson Summation Formula

If h: R — R is 2w—periodic, continuous, and a little regular

Zh<2”)—n Z h(mn) Z /%h(a —mnad gy

m=—00 m=—00

Problem and solution .
The function h(a) = exp (72 f(a)) = exp <4mh2 (e') + %) is

not 2m—periodic, only at the points of the form a = 2%1

Need to introduce a Twisted Poisson Summation Formula
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The Poisson summation formula

Method pioneered by Ohtsuki (and D. Thurston)

n

_ Z 2wiy 2wh 27, n 2miy 2w 2miy,
Sn_ g(,—,? n " n )exp(rﬂ—ifn(n7 n " n )
i1y 25000y ik =1
o0

ko =
— n
= (5) E Fo(my, ma, ..., my)

my, M2,..., Mig=—00

with

~

Fn(m17m27-"amkg):/ gn(a17a2;-~-a04k0)

ko
exp <4:’” <fn(a1, a2, .., Q) + Z mkwak>>

k=1
dOél daz e dozko
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The Poisson summation formula

Method pioneered by Ohtsuki (and D. Thurston)

n

_ Z 2wiy 2wh 27, n 2miy 2w 2miy,
Sn_ g(,—,? n " n )exp(rﬂ—ifn(n7 n " n )
i1y 25000y ik =1
o0
ko =
— n
= (5) E Fo(my, ma, ..., my)
my, M2,..., Mig=—00
with

~

Fn(m17m27-"amkg):/ gn(a17a2;-~-a04k0)

ko
exp <4:’” <fn(a1, a2, .., Q) + Z mkwak>>

k=1
dOél daz e dozko

Idea: a handful of these integrals will dominate all the other ones
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The saddle point method

To estimate

~

Fn(mlam27-"7mkg):/ gn(a17a2;-~-704k0)
[0727T]k0

ko
exp <4:’” (fn(al, a2, ., Qp) + Z mkwak>>

k=1
dal da2 . dako

deform the integration domain [0, 27]% in the imaginary direction
so that the maximum of Im £, is “as small as possible”
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The saddle point method

To estimate

~

Fn(m17m27-"7mkg):/ gn(a17a2;-~-704k0)
[07271—]“0

ko
exp <4:’” (fn(al, a2, ., Qp) + Z mkwak>>

k=1
dal dCEz . dako

deform the integration domain [0, 27]% in the imaginary direction
so that the maximum of Im £, is “as small as possible”
Because of the explicit form of

— N koo 1i. (L e—diag
foo(ozl, ao, ... ,ako) = Zk:l 112 ( (S ) + Q(Oél,az, ceey ako)
this can be done “by hand”
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Connections with hyperbolic geometry

The quadratic term

ko ko
ters1t2 2
Qa, az,...,0uy) = —4 E ST 0 + 8 E Ek+10k k41
k=1 k=1
is determined by the decomposition of the diffeomorphism

p:S— S as

P=P1O0P20-- 0P
where each ¢y is equal to L= (}1) or R=(19)
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Connections with hyperbolic geometry

The quadratic term
ko ko

ters1t2 2
Q(Oq, ag, ... ,Oéko) = —42 %ak + 8 Z€k+1akak+1
k=1 k=1
is determined by the decomposition of the diffeomorphism

p:S— S as
P=P1O0P20-- 0P
where each ¢y is equal to L= (}1) or R=(19)
This combinatorial data also gave us a sequence of ideal
triangulations 79, 71, T2, ..., Tk, = ¥(70)
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Connections with hyperbolic geometry

The quadratic term

ko ko
Z tert2 2 Z
Q(Oq, ao, .. Oéko = -4 Ek 8k+1 Pias 8 Ek+10KO k41
k=1 k=1
is determined by the decomposition of the diffeomorphism

p:S— S as
P =P1O0P20- 0Pk
where each @y is equal to L—(Ol)orR (19)

This combinatorial data also gave us a sequence of ideal
triangulations 79, 71, T2, ..., Tk, = ©(70), which gives us an ideal
triangulations of the mapping torus M,,, namely a decomposition
of M, into ideal tetrahedra
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Connections with hyperbolic geometry

The minimizing process “by hand” of the previous step has a nice
combinatorial interpretation in terms of angle structures for this
ideal triangulation of the mapping torus M,,, a classical tool to
explicitly find the hyperbolic metric of M,,
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Connections with hyperbolic geometry

The minimizing process “by hand” of the previous step has a nice
combinatorial interpretation in terms of angle structures for this
ideal triangulation of the mapping torus M,,, a classical tool to
explicitly find the hyperbolic metric of M,,

However, we need to assume that the following geometric
hypothesis holds for M,

Geometric Hypothesis. The volume of every realizable angle
structure for the ideal triangulation of My is < volyy, M, with
equality only for the angle structure associated to the hyperbolic
metric



Asymptotics of quantum invariants

LAnalytic techniques

Connections with hyperbolic geometry

The minimizing process “by hand” of the previous step has a nice
combinatorial interpretation in terms of angle structures for this
ideal triangulation of the mapping torus M,,, a classical tool to
explicitly find the hyperbolic metric of M,,

However, we need to assume that the following geometric
hypothesis holds for M,

Geometric Hypothesis. The volume of every realizable angle
structure for the ideal triangulation of My is < volyy, M, with
equality only for the angle structure associated to the hyperbolic
metric

The Geometric Hypothesis is widely assumed to always hold. It
can be effectively checked by computer on specific examples.
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Connections with hyperbolic geometry

Assuming that the Geometric Hypothesis holds, exactly 4% critical
points of the function

ko

fn(al, o, ... ,Ozko) + Z my o
k=1

. . ko .
contribute leading terms =< n2 exp (ﬁ volpyp I\/ISO) to the integrals

~

Fn(mlam2a"'7mko):/ gn(a17a2a"'aakg)
[0,27]%0

ko
exp <4;’” <f,,(oq, a2y Q) + Z mkﬂ'ak>>

k=1
dal dOéz . dako
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Cancellations

Oops! Surprise!
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Cancellations

Oops! Surprise! In the sum of these 4% leading terms

ko
= n2 exp (ﬁ Volpyp I\/I@), many of them cancel out
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Cancellations

Oops! Surprise! In the sum of these 4% leading terms

ko
= n2 exp (ﬁ Volpyp I\/I@), many of them cancel out

We are only left with 2% of them
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Cancellations

Oops! Surprise! In the sum of these 4% leading terms

ko
= n2 exp (ﬁ Volpyp I\/I@), many of them cancel out

We are only left with 20 of them, which are all equal and therefore

k
provide a global estimate that S, =< ns exp (ﬁ volpyp M¢).
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Cancellations

Oops! Surprise! In the sum of these 4% leading terms

ko
= n2 exp (ﬁ Volpyp I\/I@), many of them cancel out

We are only left with 20 of them, which are all equal and therefore

k
provide a global estimate that S, =< ns exp (ﬁ volpyp /\/lcp).

Making sure that the 4% do not all cancel out involves lifting a
property from PSLy(C) to SLy(C).
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Cancellations

Oops! Surprise! In the sum of these 4% leading terms

ko
= n2 exp (ﬁ Volpyp I\/I@), many of them cancel out

We are only left with 20 of them, which are all equal and therefore

k
provide a global estimate that S, =< ns exp (ﬁ volpyp /\/lcp).

Making sure that the 4% do not all cancel out involves lifting a
property from PSLy(C) to SLy(C).

In particular, the leading terms will all cancel out for the growth
rate of Trace /\Z7 7 p,In quantum Teichmdller theory, when the

p—invariant PSLy(C)—character 7 € Xﬁg}ﬁ2(c)(5) does not lift to a

—invariant SLy(C)—character r € Xg1,,(S)



Asymptotics of quantum invariants

LAnalytic techniques

Thank you
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