NOTES OF THE TALK OF L. TAELMAN: LOCAL SYSTEMS AND HIGGS BUNDLES

(NOTES TYPED BY A. SAUVAGET)

1. INTRODUCTION: FROM LOCAL SYSTEMS TO VECTOR BUNDLES

X Riemann surface of $g(X) \ge 2$.

Definition 1.1. A *local system* on X is a locally constant sheaf of \mathbb{C} -vct spaces, with finite dimensional stalks

Equivalence: {local systems} \leftrightarrow { representation of $\pi_1(X, x)$ }:

$$\mathbb{E} \mapsto \mathbb{E}_x.$$

The key player: $\{\text{local systems}\} \rightarrow \{\text{ vector bundles on } X\},\$

$$\mathbb{E} \mapsto \mathcal{E} = \mathbb{E}_{\mathbb{C}} \otimes \mathcal{O}_X.$$

It is an exact functor.

Example 1.2. local systems of rank 1: $H^1(X, \mathbb{C}^*) = \text{Hom}(\pi_1, \mathbb{C}^*) \simeq (\mathbb{C}^*)^{2g}$ vector bundles of rk $1 = H^1(X, \mathcal{O}_X^*) = \text{Pic}(X)$ (these two are algebraic varieties).

Then we have two exact sequences with a natural morphism between them:

$0 \longrightarrow \mathbb{Z}_X \longrightarrow$	$\rightarrow \mathbb{C}_X \xrightarrow{\mathrm{ex}}$	$\xrightarrow{\mathbf{p}} \mathbb{C}_X^{\star} -$	→ 1
~			
	Ý	, ↓	
$0 \longrightarrow \mathbb{Z}_X -$	$\rightarrow \mathcal{O}_X \stackrel{\mathrm{ex}}{\longrightarrow}$	$\xrightarrow{P} \mathcal{O}_X^{\star} -$	$\rightarrow 1$

And we have the exact sequence:

$$0 \to H^0(X, \Omega^1_X) \to H^1(X, \mathbb{C}_X) \to H^1(X, \mathcal{O}_X) \to 0$$

from this, we get:

$$0 \to H^0(X, \Omega^1) \to H^1(X, \mathbb{C}^*) \to H^1(X, \mathcal{O}_X^*) \to \mathbb{Z} \to 0$$

(the second is $(\mathbb{C}^*)^{2g}$ and the third $\operatorname{Pic}(X)$)

2. Unitary local systems

Definition 2.1. A local system \mathbb{E} is *unitary* if there exists an hermitian positive definite form $h : \mathbb{E} \times \mathbb{E} \to \mathbb{R}_X$. Equivalently \mathbb{E} comes from $\rho : \pi_1(X, x) \to U(n)$.

Proposition 2.2. {unitary local systems} \rightarrow { vector bundles on X} is fully faithful.

Date: 31/01/2020.

Proof. claim: \mathbb{E} unitary $H^0(X, \mathbb{E}) \simeq H^0(X, \mathcal{E})$ is an isomorphism (this claim implies the proposition as take $\mathbb{E} = \underline{\operatorname{Hom}}(\mathbb{E}_0, \mathbb{E}_1) = \mathbb{E}_0^{\vee} \otimes_1 z \mapsto H()$)

Indeed, first remark that

$$f \in H^0(X, \mathcal{E}) = \{f : X \to \mathbb{E}_x, \text{s.t. } f \text{ is holomorphic and } \pi_1\text{-equiv}\}$$

(where \widetilde{X} is the universal cover). We consider the map:

$$f \mapsto ||f||(\widetilde{X} \to \mathbb{E}_x \to \mathbb{R})$$

this function is sub-harmonic and thus constant on \widetilde{X} . Thus f comes from a section of the local system.

Then what is the essential image of this functor?

3. Moduli space of (stable) vector bundles

We fix numerical invariants: $n = rank(\mathcal{E}) = c_0$ and $d = deg(\mathcal{E}) = c_1$. Assume that $\mathcal{M}(n, d)$ is the moduli space of rank n and degree d vector bundles on X:

- (1) not fine, because Aut(\mathcal{E}) non-trivial: $\mathcal{E} \to X \times T$ and we consider: $\mathcal{E} \otimes \pi_T^* \mathcal{L} \to X \times T$ have isomorphic fibers over $X \times \{t\}$.
- (2) not seperated.
- (3) not bounded.

Definition 3.1. The slope of $\mathcal{E} = deg(\mathcal{E})/rk(\mathcal{E}) = \mu(\mathcal{E})$.

 \mathcal{E} is semi-stable if for any strict non-trivial sub-sheaf \mathcal{F} we have $\mu(\mathcal{F}) \leq \mu(\mathcal{E})$ \mathcal{E} is stable if for any strict non-trivial sub-sheaf \mathcal{F} we have $\mu(\mathcal{F}) < \mu(\mathcal{E})$

(1) line bundles are stable

- (2) \mathcal{E}, \mathcal{F} semi-stable, $\mu(\mathcal{E}) > \mu(\mathcal{F})$, then $\operatorname{Hom}(\mathcal{E}, \mathcal{F}) = 0$.
- (3) \mathcal{E}, \mathcal{F} stable and $\mu(\mathcal{E}) = \mu(\mathcal{F})$ then either $\mathcal{E} \simeq \mathcal{F}$ or $\operatorname{Hom}(\mathcal{E}, \mathcal{F}) = 0$.
- (4) \mathcal{E} stable, then $End(\mathcal{E}) = \mathbb{C}, \mathcal{E}$ is simple.

So we need more constraints on this moduli space to have good modular properties.

Theorem 3.2. (*HN filtration*) $\forall \mathcal{F}$, there exists a unique filtration

$$0 = \mathcal{E}_0 \subset \ldots \subset \mathcal{E}_k = \mathcal{E}$$

s.t. \mathcal{E}_i/E_{i-1} is semi-stable, $\mu(\mathcal{E}_{i+1}/\mathcal{E}_i)$,

 $(JN \ filtration) \ \forall \ semistable \ \mathcal{E} \ there \ exists$

$$0 = \mathcal{E}_0 \subset \ldots \subset \mathcal{E}_k = \mathcal{E}$$

s.t. $\mathcal{E}_{i+1}/\mathcal{E}_i$ are stable of slope $\mu(\mathcal{E})$.

Definition 3.3. \mathcal{E} is polystable if $\mathcal{E} = \bigoplus \mathcal{E}_i$, all of the same slope.

Theorem 3.4. (Mumford, Seshadri) \exists and irreducible, projective, variety $\mathcal{M}^{ss}(n,d)$, containing an open $\mathcal{M}^{s}(n,d)$ smooth s.t.

- (1) $\mathcal{M}^{s}(n,d)$ is the coarse moduli space for stable vector bundles of rank n and deg d.
- (2) if gcd(n,d) = 1, then $\mathcal{M}^s = \mathcal{M}^{ss}$, they represent a functor:
- $T \mapsto \{\mathcal{E} \to X \times T | \text{the fibers over any } t \in T \text{ is a semi-stable v.b. on } X\}/\operatorname{Pic}^0(T)$

(3) $\mathcal{M}^{ss}(n,d) \leftrightarrow \text{ polystable vect bundles of rank } n \text{ and deg } d.$

4. NARASIMHAN-SESHADRI THEOREM

Theorem 4.1. (NS) $\mathbb{E} \to \mathcal{E} = \mathbb{E} \otimes \mathcal{O}_X$ defines an equivalence of category: unitary local systems / polystable vector bundles of slope 0.

Sketch of the proof. The steps of the proof:

(1) \mathbb{E} irreducible unitary, then \mathcal{E} is stable of slop 0.

Trick of this step: if $\mathcal{F} \subset \mathcal{E}$, then consider det $\mathcal{F} \subset \bigwedge^{rk(\mathcal{F})} \mathcal{E}$ which is the exterior power of a local system (then you work a little bit more...)

- (2) fully faithful: has already been stated.
- (3) essentially surjective?

 \mathbb{E} unitary, then \mathcal{E} is polystable and \mathcal{E} stable $\Leftrightarrow \mathbb{E}$ irreducible. I.e. we have a cartesian diagram:

$$\operatorname{Hom}(\pi_1, U(n)) \xrightarrow{\psi} \mathcal{M}^{ss}(n, 0)$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\emptyset \neq \operatorname{Irr}(\pi_1, U(n)) \xrightarrow{\psi_0} \mathcal{M}^s(n, 0)$$

Facts: diagram is cartesian and ψ_0 is submersion of smooth manifolds (deformation theory).

 \Rightarrow : the statement. Indeed Hom $(\pi_1, U(n))$ is compact, and ψ_0 is proper and thus the image of ψ_0 is closed (as ψ_0 is a submersion). Besides, $\mathcal{M}^s(n, 0)$ is irreducible, so the image of ψ_0 is the total space.

5. Higgs bundles

Definition 5.1. A Higgs bundle on X is (\mathcal{E}, θ) with \mathcal{E} vect bundle $\theta : \mathcal{E} \xrightarrow{\theta} \mathcal{E} \otimes \Omega_X$ which is \mathcal{O}_X linear.

We say that a Higgs bundle is stable if for all sub-Higgs bundle, then $\mu(\mathcal{F}) < \mu(\mathcal{E})$ (and polystability is also defined as earlier).

Theorem 5.2. \exists an equivalence of categories: { local systems} \rightarrow { to polystable Higgs bundles of slope 0}.

It is compatible with the above equivalence of categories if we map {unitary local systems } \rightarrow {polystable vect bundles of slope 0} by $\mathcal{E} \rightarrow (\mathcal{E}, 0)$.

Why is this called non-abelian Hodge theory? a possible explanation:

 \mathbb{G}_{a} - Hodge theroy: $H^{1}(X,\mathbb{C}) = H^{1}(X,\mathcal{O}_{X}) \times H^{0}(X,\Omega^{1}_{X})$

 \mathbb{G}_m - Hodge theroy: $H^1(X, \mathbb{C}^*) = \operatorname{Pic}^0(X) \times H^0(X, \Omega^1_X)$

 GL_n - Hodge theroy: $H^1(X, GL_n) \simeq$ polystable ... NAHT.