PERVERSE SHEAVES

BY LIE FU (NOTES BY A. SAUVAGET)

1. T-STRUCTURES

 \mathcal{A} = abelian category $\rightsquigarrow D^b(\mathcal{A})$: triangulated category. Question: How to recover \mathcal{A} inside $D^b(\mathcal{A})$?

Truncation: $E \in D^b(\mathcal{A})$ and $n \in \mathbb{Z}$), we denote:

$$\tau^{\leq n}(E) = (\dots \to E^{n-1} \to ker(E^n \to E^{n+1}) \to 0)$$

similarly for $\tau^{\geq n}(E)$.

Then we have a distinguished triangle: $\tau^{\leq n}(E) \to E \to \tau^{\geq n+1}(E) \to +1$, and

$$\mathcal{A} \simeq \{ E | H^i(E) = 0, \forall i \neq 0 \}$$

Definition 1.1. If D is a triangulated category, a *t*-structure on D is a pair of full additive subcategories $(D^{\leq 0}, D^{\geq 0})$. We denote by $D^{\leq n} = D^{\leq 0}[-n]$ and $D^{\geq n} = D^{\geq 0}[-n]$. We impose the conditions:

(1) $D^{\geq -1} \subset D^{\geq 9} \subset D^{\geq 1} \dots$

(2) (Semi-orthogonality) $\operatorname{Hom}(D^{\leq 0}, D^{\geq 1}) = 0.$

(3) (decomposability) $\forall E \in D, \exists$ distinguished triangle:

$$E' \to E \to E'' \to +1$$

with $E' \in D^{\leq 0}$ and $E'' \in D^{\geq 1}$

The classical situation provides an example of *t*-structure on $D(\mathcal{A})$.

Definition 1.2. The category $\mathcal{C} = D^{\leq 0} \cap D^{\geq 0}$ is called the *heart* of the t-structure.

Proposition 1.3. The decomposition of objects is canonical.

Proof. If we have two distinct decompositions of E: (E', E'') and (F', F''). Then we have a long exact sequence:

 $\ldots \to \operatorname{Hom}(E', F''[-1]) \to \operatorname{Hom}(E', F') \to \operatorname{Hom}(E', E) \to \operatorname{Hom}(E', F'') \to \ldots$

The two exterior are zero by semi-orthogonality condition.

Corollary 1.4. For all $n \in \mathbb{Z}$, we have functors: $\tau^{\leq n} : D \to D^{\leq n}$ and $\tau^{\geq n} : D \to D^{\leq n}$, s.t. $(i_{\leq n}, \tau^{\leq n})$ and $(\tau^{\geq n}, i_{\geq n})$ are adjoint pairs.

Remark 1.5. Hom $(D^{\leq n}, D^{\geq n+1}) = 0$ by definition. We have actually: $D^{\leq n} =$ orthogonal of $D^{\geq n+1}$.

Theorem 1.6. (BDD) $C = D^{\leq 0} \cap D^{\geq 0}$ is an abelian category, and all short exact sequences $0 \to E' \to E \to E'' \to 0$ in C give rise to a distiguinshed triangle $E' \to E \to E'' \to +1$ in D.

Proof. • \mathcal{C} is closed under \oplus .

Date: 31/01/2020.

• let $E, F \in \mathcal{C}, f : E \to F$ complete into $E \to F \to G \to +1$ distinguished. Then $ker(f) = H^{-1}(G) = \tau^{\leq -1}\tau^{\geq -1}(G)$, and coker(f) = $H^0(G) = \tau^{\le 0} \tau^{\ge 0}(G).$

 $D^{\leq n}$ is stable by extension. Then for all W in C we have to show that

 $0 \to \operatorname{Hom}(W, ker(f)) \to \operatorname{Hom}(W, kerE) \to \operatorname{Hom}(W, F)$

is exact. We use the above distinguished triangle to see that:

 $\operatorname{Hom}(W, F[-1]) = 0 \to \operatorname{Hom}(W, G[-1]) \to \operatorname{Hom}(W, E) \to \operatorname{Hom}(W, F)$

The first term is Hom(W, ker). (same for coker, while the proof for images and co-images uses the octahedron axiom

We can in fact defined truncation functors: $\tau^{[a,b]}: D \to D^{\geq a} \cap D^{\leq b}$.

Proposition 1.7. $H^0 = \tau^{\leq 0} \circ \tau^{\geq 0}$ is a cohomological functor from D to C, i.e. for any distinguished triangle, we have a long exact sequence.

2. Exactness

Let $F: D_1 \to D_2$ be a triangulated functor between triangulated endowed with t-structures. (giving C_1 and C_2).

Definition 2.1. ${}^{p}F: \mathcal{C}_{1} \to D_{1} \to D_{2} \to \mathcal{C}_{2}$

Definition 2.2. F is left t-exact if $F(D^{\geq 0}) \subset D_2^{\geq 0}$ (and right...)

Proposition 2.3. If F is left t-exact then ${}^{p}F$ is left exact (same for right).

Proposition 2.4. $F: D_1 \leftrightarrow D_2: G$ adjoint pair, then F right t-exact is equivalent to G left t-exact.

3. Perverse t-structure

X:analytic space (algebraic variety \mathbb{C}).

 $D^b(\mathbb{C}_X)$ = bounded derived cat of \mathbb{C}_X -modules.

 $D^n_c(\mathbb{C}_X) = D^b_c(X)$ = the category of $E \in D^b(\mathbb{C}_X)$, such that for all $i, H^i(E) \in$ Sh(X) is constructible.

Recall a sheaf F on X is constructible (algebraically) if there exists an alg. stratification of X such that F is a local system on each stratum.

Six functor formalism for $f: X \to Y$:

- $f^*: D^b(\mathbb{C}_Y) \to D^b(\mathbb{C}_X);$
- $f_* = Rf_* : D^b(\mathbb{C}_X) \to D^b(\mathbb{C}_Y);$ $f_! : D^b(\mathbb{C}_X) \to D^b(\mathbb{C}_Y);$ $f^! : D^b(\mathbb{C}_Y) \to D^b(\mathbb{C}_X);$

- \otimes and RHom(.).

Adjoint pairs (f^*, f_*) and $(f_!, f^!)$. Verdier duality: $\pi: X \to pt, \, \omega_X = \pi^!(\mathbb{C}).$

$$\mathbb{D}_X = (E \mapsto RHom(E, \omega_X))$$

Proposition 3.1. (1) $\mathbb{D}_X^2 \simeq Id_{D_c^b(X)}$ (2) $f_* \circ \mathbb{D}_X = \mathbb{D}_Y \circ f_!$ (3) $f^! \circ \mathbb{D}_Y = \mathbb{D}_X \circ f^*$ on D_c^b .

 $\mathbf{2}$

Definition 3.2. (Perverse *t*-structure) F in ${}^{p}D_{C}^{\leq 0}(X)$ if dim $(\operatorname{supp}(H^{i}(F)) \leq -i$ for all *i*.

 $F \text{ in } {}^{p}D_{\overline{C}}^{\geq 0}(X) \text{ if } \dim(\operatorname{supp}(H^{i}(DD_{X}(F)))) \leq -i \text{ for all } i.$ Perv(X) is the heart of this t-structure.

Theorem 3.3. (BBD) This is a t-structure.

The proof goes by constructing the *t*-structure obtained by gluing pieces.

Definition 3.4. A recollement is the datum of: $D_Z \xrightarrow{i_*} D \xrightarrow{j_*} D_U$ that gives two triples of adjoints $(i^*, i_*, i^!), (j_!, j^*, j_*)$ such that:

- (1) $j^* \circ i_* = 0$ (2) $j_! j^* \to id \to i_* i^*$ distinguished (3) $i_* i^! \to id \to j_* j^*$ distinguished
- (4) $i_*, j_!, j_*$ are fully faithfull.

Claim: From t-structures on D_Z and D_U , then $D^{\leq 0} = \{E/i^* E \in D^{\leq 0}, j^* E \in D_U^{\leq 0}\}$ is a t-structure on D.